Технические изобретения и научные открытия 18 века. Важнейшие технические изобретения XIX века. Машиностроение и промышленность

Ученые 19 века – создатели великих инноваций, открытий и изобретений. XIX век дал нам много известных людей, которые полностью изменили мир. 19 век принес нам технологическую революцию, электрификацию и большие достижения в медицине. Ниже представлен список некоторых из наиболее важных изобретателей и их изобретения, которые сделали огромное влияние на человечество которым мы пользуемся даже сегодня.

Никола Тесла – переменный ток, электродвигатель, технологию радио, пульт дистанционного управления

Если начать исследовать наследие Николы Тесла, то можно понять, что он был одним из величайших изобретателей XIX и начала XX века и по праву заслуживает первое место в этом списке. Он родился 10 июля 1856, в Смильян, Австрийская империя в семье священника Милутина Теслы сербской православной церкви. Отец как сербский православный священник первоначально привил интерес Николы к науке. Он достаточно разбирался в механических устройствах того времени.

Никола Тесла получил гимназическое образование и позже поступил в политехнический университет в Граце, Австрия. Он бросил обучение и отправился в Будапешт, где работал в компании на телеграфе и затем стал главным электриком в Будапеште на АТС. В 1884 начал работать на Эдисона, где получил вознаграждение 50 000 долларов за усовершенствование двигателей. Затем Тесла создал свою собственную лабораторию, где мог экспериментировать. Он обнаружил электрон, рентгеновские лучи, вращающеся магнитное поле, электрический резонанс, космические радиоволны и изобрел беспроводный пульт дистанционного управления, технологию радио, электродвигатель и много других вещей, которые изменили мир.

Сегодня он является самым известным ученым 19 века за его вклад в строительство электростанции на Ниагарском водопаде и за его открытие и применение переменного тока, который стал стандартом и используется по сей день. Он умер 7 января 1943 года, в Нью-Йорке, США.

Научные открытия и технические изобретения в России XVIII в.

Гвоздецкий В. Л., Будрейко Е. Н.

БЕРИНГ ВИТУС ИОНАССЕН (1681–1741). Мореплаватель, капитан-командор российского флота, выходец из Дании.

По поручению царя Петра I во главе 1-ой Камчатской экспедиции (1725–1730) он прошёл через всю Сибирь до Тихого океана, пересёк полуостров Камчатка и установил, что на севере сибирский берег поворачивает на запад. Первая экспедиция Беринга явилась прологом к дальнейшим исследованиям северо-востока Азии. Понимая это, он писал: "Америка, или иные между оной лежащие земли, не очень далеко от Камчатки... Не без пользы было, чтоб Охотской или Камчатской водяной проход, до устья реки Амура и далее, до Японских островов, выведывать...". И Беринг был назначен руководителем 2-ой Камчатской (Великой Северной) экспедиции (1733–1743), в ходе которой было точнейшим образом исследовано сибирское побережье, открыты побережье полуострова Аляска и ряд островов Алеутской гряды. Заболев во время зимовки на острове, капитан-командор окончил жизненный путь 19 декабря 1741 г. Ныне остров, где отважный мореплаватель нашел вечный покой, носит название острова Беринга. На всех картах мира полузакрытое море на севере Тихого океана, по которому он плавал, названо его именем - Берингово море, и пролив, расположенный между материками Евразия и Северная Америка и соединяющий Северный Ледовитый океан с Тихим океаном, - Берингов пролив. А острова, на которые выбросило его шхуну "Святой Петр", называются Командорскими.

Завершил 2-ую Камчатскую экспедицию после смерти Беринга его помощник, капитан-командор Алексей Ильич Чириков (1703–1748), который на шлюпе "Святой Павел" подошёл к берегам Америки.

БЕТАНКУР АВГУСТИН АВГУСТИНОВИЧ (1758–1824). Инженер-механик и строитель.

Под руководством Бетанкура выполнен ряд важных работ: переоборудован Тульский оружейный завод, установлены на нем паровые машины, созданные по его проекту; сооружено здание Манежа в Москве, перекрытое уникальными по величине пролета (45 м) деревянными фермами и т. д. По инициативе Бетанкура в Петербурге в 1810 г. учрежден Институт путей сообщения, которым он руководил до конца жизни.

ВИНОГРАДОВ ДМИТРИЙ ИВАНОВИЧ (1720?–1758). Изобретатель русского фарфора.

Учился в Славяно-греко-латинской академии в Москве. В 1736 г. вместе с М. В. Ломоносовым и Р. Райзером был послан за границу, где изучал химию, металлургию и горное дело. По возвращении был направлен (1744) на учрежденную русским правительством "порцелиновую мануфактуру" (затем Государственный фарфоровый завод им. М. В. Ломоносова). Поскольку методы получения китайского и саксонского фарфора держались в секрете, Виноградов приступил к работе, не имея никаких данных о технологии производства.

Разработал технологию производства и получил первые образцы фарфора, изготовленные из отечественного сырья (1752). О своих опытах рассказал в рукописи "Обстоятельное описание чистого порцелина, как оной в России при Санкт-Петербурге делается купно с показанием всех к тому принадлежащих работ".

ГЕННИН ВИЛИМ ИВАНОВИЧ (1676–1750).

Выдающийся руководитель горного производства и станкостроитель. Время управления Генниным (1722–1734) было важным периодом в истории промышленности Урала. Под его руководством были осуществлены важные мероприятия в области организации, совершенствования техники и технологии производства. Управлял также Сестрорецким и Тульским оружейными заводами.

ГЕОЛОГИЧЕСКОЕ ИЗУЧЕНИЕ ТЕРРИТОРИИ РОССИИ

В начале XVIII в. поиски полезных ископаемых привели к открытию Алопаевского месторождения меди (1702), огнеупорных глин (1704), минеральных вод близ Петрозаводска (1714), каменного угля на Дону и в Воронежской губернии (1721), каменного угля на территории современного Кузнецкого бассейна (1722), самоцветов в Забайкалье (1724).

В 1768–1774 гг. состоялись академические экспедиции, которые изучали геологическое строение России: маршруты экспедиции Ивана Ивановича Лепехина (1740–1802) охватили Поволжье, Урал, север Европейской России; экспедиция Петра Симона Палласа (1741–1811) обследовала Среднее Поволжье, Оренбургский край, Сибирь до Читы и составила описание строения гор, холмов, равнин; экспедиция Иоганна Георга Гмелина (1709–1755) дошла через Астраханский край до Дербента и Баку и т. д.

ДЕМИДОВЫ. Русские заводчики, землевладельцы, ученые, просветители, меценаты.

Их родословная восходит к тульским кузнецам, с 1720 г. - дворяне. В конце XVIII в. вошли в круг высшего чиновничества и знати, основали свыше 50 заводов, производивших 40% чугуна в стране. Наиболее известны:

Никита Демидович Антуфьев (1656–1725) - родоначальник и организатор строительства металлургических заводов на Урале.

Павел Григорьевич Демидов (1738–1821) - основатель Демидовского лицея в Ярославле - высшего учебного заведения для детей дворян и разночинцев в 1803–1918 гг. В 1918 преобразован в университет.

Павел Николаевич Демидов (1798–1840) - почетный член Петербургской АН, учредитель Демидовских премий, присуждавшихся в 1832–1865 гг. Академией за труды по науке, технике, искусству. Эти премии считались самой почетной научной наградой России.

КОТЕЛЬНИКОВ СЕМЕН КИРИЛЛОВИЧ (1723–1806). Академик Петербургской АН.

Талантливый русский ученый, ученик М. В. Ломоносова и Л. Эйлера, автор "Книги, содержащей в себе учение о равновесии и движении тел" - первого русского учебника механики, наиболее серьезного из всех оригинальных и переводных трудов по механике, изданных в России в XVIII в.

КРАФТ ГЕОРГ ВОЛЬФГАНГ (1701–1754). Физик, математик, академик Петербургской АН.

Автор первой русской книги по механике "Краткое руководство к познанию простых и сложных машин" (1738), а также книги "Краткое введение в геометрию" (1740) и нескольких учебников. Многое сделал для преподавания и популяризации механики в России.

КРАШЕНИННИКОВ СТЕПАН ПЕТРОВИЧ (1711–1755). Основатель русской научной этнографии, исследователь природы Камчатки.

Труд ученого "Описание земли Камчатки", изданный в 1756 г., был не только первым русским сочинением, в котором давалось описание одной из областей Сибири, но и первым в западноевропейской литературе.

Он состоял из 4-х частей. Часть первая - "О Камчатке и о странах, которые в соседстве с нею находятся" - содержала географическое описание Камчатки. Часть вторая - "О выгоде и о недостатках земли Камчатка" - посвящена естественно-историческому описанию Камчатки: флоры, фауны, населяющих землю млекопитающих, птиц и рыб, перспектив животноводства. Часть третья - "О камчатских народах" - представляет собой первый русский этнографический труд: описание быта, нравов, языка местного населения - камчадалов, коряков, курилов. Четвертая часть посвящена истории покорения Камчатки.

Крашенинников был назван за свою книгу "Нестором русской этнографии".

КУЛИБИН ИВАН ИВАНОВИЧ (1735–1818). Выдающийся механик-изобретатель.

С 1749 г. на протяжении более 30 лет заведовал механической мастерской Петербургской АН. Разработал проект 300-метрового одноарочного моста через Неву с деревянными решётчатыми формами (1772). В последние годы жизни изготовил фонарь-прожектор с отражателем из мельчайших зеркал, речное "машинное" судно, передвигающееся против течения, механический экипаж с педальным приводом.

Прославился как автор изготовленных в подарок императрице Екатерине II удивительных часов, имевших вид пасхального яйца. "Диковина видом и величиною между гусиным и утиным яйцом", показывавшая время и отбивавшая часы, половины и четверти часа, заключала внутри себя крохотный театр-автомат. По прошествии каждого часа створчатые двери раздвигались и разворачивалось театрализованное представление. Механизм часов "состоял из слишком 1000 мельчайших колесиков и прочих механических частей". В полдень часы играли сочиненный в честь императрицы гимн. Во второй половине суток они исполняли новые мелодии и стих.

КУНСТКАМЕРА (От нем. Kunstrammer - кабинет редкостей). Первый русский естественно-научный музей.

Открыта в 1719 г. В ней хранились анатомические, зоологические и исторические коллекции, собранные во многих районах России, а также коллекции, приобретённые Петром I в Западной Европе, его личные собрания оружия и произведений искусства. В 30-х гг. XVIII в. превратилась в комплексный музей с отделами искусства и этнографии, естествознания, нумизматики и исторических материалов (кабинет Петра I). К началу XIX в., когда скопилось огромное количество разнообразных коллекций, из нее были выделены в самостоятельные учреждения музеи, существующие и доныне: Музей антропологии и этнографии РАН.

ЛОМОНОСОВ МИХАИЛ ВАСИЛЬЕВИЧ (1711 – 1765)

Первый русский ученый-естествоиспытатель мирового значения, поэт, заложивший основы современного русского литературного языка, художник, историк, поборник отечественного просвещения, развития русской науки и экономики.

Родился в семье крестьянина-помора. Желая получить образование, в конце 1730 г. направился пешком в Москву. Здесь, выдав себя за сына дворянина, в 1731 г. поступил в Славяно-греко-латинскую академию. В 1735 г. в числе лучших учеников был послан в Петербург в только что открытый при Академии наук университет, а затем в Германию для продолжения образования. В 1741 г. вернулся в Петербургскую АН. С 1745 г. первый русский академик Петербургской АН.

"Мудрые науки" составляют естественно-техническое направление его деятельности: химия и физика, астрономия и минералогия, геология и почвоведение, горное дело и металлургия, картография и мореходство. Им впервые разграничены понятия "корпускула" (на языке современной науки - молекула) и "элемент" (атом), сформулирован принцип сохранения материи и движения, сделаны другие открытия, часть из которых принадлежит к золотому фонду мировой науки. Литература, история и национальный язык - вот с чем были связаны исследования ученого в другом, гуманистическом направлении его деятельности. Им были созданы "Российская грамматика" (1756), "Древняя Российская история" (1766). Не случайно В. Г. Белинский назвал его "Петром Великим русской литературы". Научно-организационная деятельность ученого также была плодотворной: открытие первой в России химической лаборатории (1748), разработка проекта переустройства Петербургской АН. По инициативе Ломоносова был основан Московский университет (1755), ныне носящий его имя.

Промышленная революция - инновационный период середины 18–19 веков - перенесла людей из преимущественно аграрного существования в относительно городской образ жизни. И хотя мы называем эту эпоху «революцией», ее название несколько вводит в заблуждение. Это движение, которое возникло в Великобритании, не было внезапным взрывом достижений, а представляло собой серию последовательных прорывов, которые опирались или подпитывали друг друга.

Точно так же, как доткомы были неотъемлемой частью 1990-х, именно сделали эту эпоху уникальной. Без всех этих гениальных умов многих важных товаров и услуг, которыми мы пользуемся сегодня, просто не существовало бы. Вне зависимости от того, был ли изобретатель простым мечтателем-теоретиком или упорным создателем важных вещей - эта революция изменила жизни многих людей (включая нас).


У многих из нас фраза «отложите ваши калькуляторы на время экзамена» всегда будет вызывать беспокойство, но такие экзамены без калькуляторов наглядно демонстрируют, какой была жизнь Чарльза Бэббиджа. Английский изобретатель и математик родился в 1791 году, со временем его задачей стало изучение математических таблиц в поисках ошибок. Такие таблицы, как правило, использовались в астрономии, банковском деле и инженерии, и, поскольку создавались от руки, часто содержали ошибки. Бэббидж задумал создать калькулятор и в конечном итоге разработал несколько моделей.

Конечно, у Бэббиджа не могло быть современных компьютерных компонентов вроде транзисторов, поэтому его вычислительные машины были сугубо механическими. Они были удивительно большими, сложными и их было трудно построить (ни одна из машин Бэббиджа не появилась при его жизни). Например, разностная машина «номер один» могла решать полиномы, но ее конструкция состояла из 25 000 отдельных частей общим весом в 15 тонн. Разностная машина «номер два» была разработана в период с 1847 по 1849 год и была более элегантной, наряду с сопоставимой мощностью и в три раза меньшим весом.

Была и другая конструкция, благодаря которой Бэббидж получил звание отца современной вычислительной техники, по мнению некоторых людей. В 1834 году Бэббидж решил создать машину, которую можно было бы запрограммировать. Как и современные компьютеры, машина Бэббиджа могла хранить данные для последующего использования в других вычислениях и выполнять логические операции типа if-then. Бэббидж не особо занимался разработкой конструкции аналитической машины, как в случае с разностными машинами, но чтобы представлять грандиозность первой, нужно знать, что она была настолько массивной, что ей нужен был паровой двигатель для работы.

Пневматическая шина


Как и многие изобретения этой эпохи, пневматическая шина «стояла на плечах гигантов», вступая в новую волну изобретений. Таким образом, хотя часто изобретение этой важной вещи приписывают Джону Данлопу, до него в 1839 году Чарльз Гудиер запатентовал процесс вулканизации каучука.

До экспериментов Гудиера каучук был весьма новым продуктом с относительно небольшим спектром применения, но это, благодаря его свойствам, очень быстро изменилось. Вулканизация, в которой каучук укреплялся серой и свинцом, создавала более прочный материал, подходящий для производственного процесса.

В то время как каучуковые технологии быстро развивались, другие сопутствующие изобретения промышленной революции развивались намного медленнее. Несмотря на такие достижения, как педали и управляемые колеса, велосипеды оставались больше предметом любопытства, нежели практичным видом транспорта на протяжении большей части 19 века, поскольку были громоздкими, их рамы - тяжелыми, а колеса - жесткими и маломаневренными.

Данлоп, ветеринар по профессии, отметил все эти недостатки, когда наблюдал за тем, как его сын с трудом управляется с трехколесным велосипедом, и решил их исправить. Сначала он попытался завернуть садовый шланг в кольцо и обернуть его жидким каучуком. Этот вариант оказался значительно превосходящим уже существующие шины из кожи и укрепленной резины. Очень скоро Данлоп начал производить велосипедные шины с помощью компании W. Edlin and Co., а позже она стала Dunlop Rubber Company. Она быстро захватила рынок и значительно повысила производство велосипедов. Вскоре после этого Dunlop Rubber Company начала производство резиновых шин для другого продукта промышленной революции - автомобиля.

Как и с каучуком, практическое применение следующего пункта долгое время не было очевидным.


Изобретения типа лампочки занимают очень много страниц в книге истории, но мы уверены, что любой практикующий хирург назвал бы анестезию лучшим продуктом промышленной революции. До ее изобретения исправление любого недуга было, пожалуй, более болезненным, чем сам недуг. Одна из самых больших проблем, связанных с удалением зуба или конечности, заключалась в удержании пациента в расслабленном состоянии зачастую с помощью алкоголя и опиума. Сегодня, конечно, мы все можем поблагодарить анестезию за то, что мало кто из нас может вспомнить болезненные ощущения от операции вообще.

Закись азота и эфир были обнаружены в начале 1800-х годов, но оба средства не нашли особого практического применения, кроме бесполезного одурманивания. Закись азота вообще была более известна как веселящий газ и использовалась для развлечения аудитории. Во время одной из таких демонстраций молодой стоматолог Хорас Уэллс увидел, как некто вдохнул газ и повредил ногу. Когда мужчина вернулся на свое место, Уэллс спросил, было ли больно пострадавшему, и услышал в ответ, что нет. После этого стоматолог решил использовать веселящий газ в своей работе, причем первым подопытным вызвался быть сам. На следующий день Уэллс и Гарднер Колтон, организатор шоу, уже испытали веселящий газ в офисе Уэллса. Газ действовал замечательно.

Вскоре после этого испытали и эфир в качестве анестезии при длительных операций, хотя кто на самом деле стоял за привлечением этого средства, так доподлинно и неизвестно.


Многие изменившие мир изобретения появились именно в период промышленной революции. Камера не была одним из них. По сути, предшественник камеры, известный как камера-обскура, появился еще в конце 1500-х годов.

Однако сохранение снимков камеры долгое время было проблемой, особенно если у вас не было времени, чтобы отрисовать их. Затем пришел Никефор Ньепс. В 1820-х годах французу пришла в голову идея наложить мелованную бумагу, наполненную светочувствительными химическими веществами, на изображение, проецируемое камерой-обскурой. Спустя восемь часов появилась первая в мире фотография.

Понимая, что восемь часов - это слишком долгое время для позирования в режиме съемки семейного портрета, Ньепс объединил силы с Луи Дагером, чтобы улучшить свою конструкцию, и именно Дагер продолжал дело Ньепса после его смерти в 1833 году. Так называемый даггеротип сначала вызвал энтузиазм во французском парламенте, а затем и во всем мире. Однако, хотя дагерротип мог создавать очень детальные изображения, с них нельзя было сделать реплику.

Современник Дагера, Уильям Генри Фокс Талбот, также работал над улучшением фотографических изображений в 1830-х годах и сделал первый негатив, через который свет мог высвечиваться на фотографической бумаге и создавать позитив. Похожие достижения начали быстро находить место, и постепенно камеры стали способны даже снимать движущиеся объекты, а время экспозиции - сокращаться. Фото лошади, сделанное в 1877 году, положило конец давним дебатам на тему того, отрываются ли все четыре ноги лошади от земли во время галопа (да). Поэтому в следующий раз, когда вы достанете свой смартфон, чтобы сделать снимок, на секунду задумайтесь о веках инноваций, которые позволили этому снимку родиться.

Фонограф


Ничто не может в полной мере повторить опыт живого выступления любимой группы. Не так давно живые выступления вообще были единственным способом прослушивания музыки. Томас Эдисон изменил это навсегда, разработав метод транскрибирования телеграфных сообщений, который привел его к идее фонографа. Идея проста, но прекрасна: записывающая игла выдавливает канавки, соответствующие звуковым волнам музыки или речи, во вращающемся цилиндре, покрытом оловом, а другая игла воспроизводит исходный звук на основе этих канавок.

В отличие от Бэббиджа и его десятилетних попыток увидеть свои проекты осуществленными, Эдисон поручил своему механику Джону Круэзи построить машину и спустя 30 часов получил в свои руки рабочий прототип. Но Эдисон не остановился на достигнутом. Его первые оловянные цилиндры могли воспроизвести музыку всего несколько раз, поэтому потом Эдисон заменил олово воском. К тому времени фонограф Эдисона уже не был единственным на рынке, а со временем люди начали отказываться от цилиндров Эдисона. Основной механизм сохранился и используется по сей день. Неплохо для случайного изобретения.

Паровой двигатель


Как сегодня нас очаровывает рокот двигателей V8 и скоростных реактивных самолетов, когда-то и паровые технологии были невероятными. К тому же это сыграло гигантскую роль в поддержке промышленной революции. До этой эпохи люди использовали лошадей и кареты, чтобы передвигаться, а практика добычи полезных ископаемых в шахтах была весьма трудоемкой и неэффективной.

Джеймс Уатт, шотландский инженер, не разработал паровой двигатель, но ему удалось сделать более эффективную версию такового в 1760-х годах путем добавления отдельного конденсатора. Это навсегда изменило горнодобывающую промышленность.

Изначально некоторые изобретатели использовали паровой двигатель для выкачки и удаления воды из шахт, что давало улучшенный доступ к ресурсам. По мере того как эти двигатели приобретали популярность, инженеры задавались вопросом, как их можно улучшить. Версия парового двигателя Уатта не нуждалась в охлаждении после каждого удара, которым сопровождалась добыча ресурсов в то время.

Другие же задавались вопросом: что, если вместо того, чтобы транспортировать сырье, товары и людей на лошади, задействовать машину на паровой тяге? Эти мысли вдохновили изобретателей на исследование потенциала паровых двигателей за пределами горнодобывающего мира. Модификация парового двигателя Уатта привела к другим разработкам промышленной революции, включая первые паровозы и суда на паровой тяге.

Следующее изобретение, возможно, менее известно, но обладает определенно важным значением.

Консервация


Откройте кухонный шкаф и точно обнаружите хоть одно полезное изобретение промышленной революции. Тот же период, который подарил нам паровой двигатель, изменил наш способ хранения еды.

После распространения Великобритании в другие части мира, изобретения начали подпитывать промышленную революцию с постоянной скоростью. К примеру, такой случай произошел с французским шеф-поваром и новатором по имени Николя Аппер. В поисках путей сохранения продуктов без потери вкуса и свежести Аппер регулярно экспериментировал с хранением еды в контейнерах. В конце концов он пришел к выводу, что хранение еды, сопряженное с сушкой или солью, не приводит к улучшению вкусовых качеств, а совсем наоборот.

Аппер подумал, что хранение продуктов в контейнерах будет особенно полезным для моряков, страдающих от недоедания в море. Француз работал над техникой кипячения, которая заключалась в помещении еды в банку, уплотнения, а затем кипячения в воде для создания вакуумного уплотнения. Аппер достиг своей цели, разработав специальный автоклав для консервации в начале 1800-х годов. Основная концепция сохранилась до сих пор.


До появления смартфонов и ноутбуков люди все еще продолжали пользоваться такой технологией промышленной революции, как телеграф - хотя и значительно меньше, чем раньше.

Через электрическую систему сетей телеграф мог передавать сообщения из одного места в другое на большие расстояния. Получатель сообщения должен был интерпретировать маркировку, произведенную машиной, с помощью азбуки Морзе.

Первое сообщение было отправлено в 1844 году Сэмюэлем Морзе, изобретателем телеграфа, и оно точно передает его волнение. Он передал «Что творит Господь?» с помощью своей новой системы, намекая на то, что обнаружил нечто крупное. Так и было. Телеграф Морзе позволил людям общаться практически мгновенно на большом расстоянии.

Информация, передаваемая с помощью телеграфных линий, также серьезно поспособствовала развитию СМИ и позволила правительствам быстрее обмениваться информацией. Развитие телеграфа даже породило первую службу новостей, Associated Press. В конце концов, изобретение Морзе соединило Америку с Европой - и это было очень важно на то время.

Прялка «Дженни»


Будь то носки или что-нибудь из модных предметов одежды, именно достижения текстильной промышленности в период промышленной революции сделали возможными эти вещи для масс.

Прялка «Дженни», или прядильная машина Харгривса, внесла большой вклад в развитие этого процесса. После того как сырье - хлопок или шерсть - собирается, из него нужно сделать пряжу, и зачастую эта работа весьма кропотлива для людей.

Джеймс Харгривс решил этот вопрос. Принимая вызов британского Королевского общества искусств, Харгривс разработал устройство, которое намного перевыполнило требования конкурса, чтобы оно сплетало не менее шести пряж одновременно. Харгривс построил машину, которая выдавала восемь потоков одновременно, что резко повышало эффективность этой деятельности.

Устройство состояло из прялки, которая контролировала поток материала. На одном конце устройства находился вращающийся материал, а на другом нити собирались в пряжу из-под ручного колеса.

Дороги и шахты


Создать инфраструктуру для поддержки промышленной революции было не так легко. Спрос на металлы, в том числе железо, подстрекал промышленность придумывать более эффективные методы добычи и транспортировки сырья.

В течение нескольких десятилетий железодобывающие компании поставляли большое количество железа фабрикам и производственным компаниям. Для получения дешевого металла горнодобывающие компании поставляли больше чугуна, нежели кованого железа. Кроме того, люди стали использовать металлургию или просто исследовать физические свойства материалов в промышленных условиях.

Массовая добыча железа позволила механизировать другие изобретения промышленной революции. Без металлургической промышленности не развились бы железные дороги, паровозы, мог произойти застой в развитии транспорта и других отраслей.

В 1951 году Лион Фейхтвангер описал научные достижения конца XVIII века:

«За это пятилетие люди освоили новый большой кусок своей планеты. Соединенные Штаты Америки старались привлечь переселенцев и для этой цели учредили конторы и общества, которые продавали на льготных условиях земельные участки - по доллару за акр - и предоставляли долгосрочный кредит. В это же пятилетие Александр фон Гумбольдт предпринял с научными целями большое путешествие по Центральной и Южной Америке, в результате которого появился его «Космос» и мир стал доступнее для понимания и освоения.

В это пятилетие во всём мире, и прежде всего в Европе, произошло много крупных политических переворотов. Старые монархии рушились, и на их месте возникали новые государственные формации, большей частные республики. Многие духовные владения подверглись секуляризации. Папу на положении пленника перевезли во Францию, венецианский дож в последний раз обручился с морем. Французская республика выиграла много сражений на суше, Англия - много сражений на море; Англия, кроме того, завершила своё завоевание Индии. К концу столетия Англия заключила союз почти со всей Европой с целью помешать дальнейшему победному шествию Французской республики и распространению передовых идей.

В общей сложности за весь предшествующий век в мире было меньше войн и насилий, чем в это последнее пятилетие, и в это же пятилетие немецкий философ Иммануил Кант написал свою работу «О вечном мире».

В частной жизни военные вожди расколовшегося мира не обращали внимания на пересуды черни и газет. В это пятилетие Наполеон Бонапарт женился на Жозефине Богарне, а адмирал Гораций Нельсон узнал и полюбил Эмму Гамильтон.

В это пятилетие люди сбросили прежний, тяжёлый и торжественный наряд, и грань между платьем привилегированного и низшего сословия стерлась. Во Франции под влиянием художника Жака-Луи Давида вошла в моду простая, подражающая хитонам древних одежда - la merveilleuse; мужчины начали носить длинные штаны - панталоны, и костюм этот быстро распространился во всей Европе.

В это пятилетие в египетском городе Розетте, арабском Решиде, был найден покрытый письменами камень, который дал возможность Шампольону расшифровать иероглифы. Антуан Кондорсе положил основу коллективистско-материалистической философии истории. Пьер-Симон Лаплас научно объяснил происхождение планет. Но человек, который не признавал, что мир, как учит Библия, создан в шесть дней - от 28 сентября до 3 октября 3988 года до рождества Христова , - такой человек не мог занимать государственную должность ни в Испанском королевстве, ни в Габсбургской монархии.

В это пятилетие Гёте писал в «Венецианских эпиграммах», что самых ненавистных ему вещей на свете «четыре: запах табака, клопы, чеснок и крест». А Томас Пейн работал над учебником рационализма «Век разума». В это же время Шлейермахер написал свою книгу «Речи о религии к образованным людям, её презирающим», Новалис - свою «Теодицею», а французский поэт Шатобриан стал приверженцем романтизированного католицизма. Книга «История упадка и разрушения Римской империи», в которой Эдвард Гиббон с остроумием и холодной иронией изображал возникновение христианства как возврат к варварству, была провозглашена самым значительным историческим трудом; но не меньшим успехом пользовались «Апологии» - книга, в которой епископ Ричард Уотсон пытался в сдержанных и изящных выражениях возражать Гиббону и Пэйну.

В это пятилетие были сделаны существенные физические, химические и биологические открытия, были установлены и доказаны важные социологические принципы, но открывателей и провозвестников нового встречали в штыки, осмеивали, бросали в тюрьмы; были испытаны новые научные лечебные средства, но духовенство и знахари изгоняли из больных бесов и врачевали молитвами и ладанками.

Философствующие государственные деятели и алчные дельцы, молчаливые учёные и крикливые рыночные шарлатаны, властолюбивые священники и крепостные крестьяне, художники, отзывчивые на все прекрасное, и тупые, кровожадные ландскнехты - все жили вместе на ограниченном пространстве, толкалась, теснили друг друга, и умные, и глупые, и те, чей мозг был развит едва ли больше, чем у первобытного человека, и те, чей мозг рождал мысли, которые станут доступны большинству разве что по истечении ещё одного ледникового периода; те, кто был отмечен музами и восприимчив ко всему прекрасному, и те, которых не трогало искусство, воплощённое в слове, в звуке или в камне; энергичные и деятельные, косные и ленивые - все они дышали одним воздухом, соприкасались друг с другом, находились в постоянной, непосредственной близости. Они любили и ненавидели, вели войны, заключали договоры, нарушали их, вели новые войны, заключали новые договоры, мучили, сжигали, кромсали себе подобных, соединялись и рожали детей и только редко понимали друг друга.

Немногие умные, одаренные стремились вперед; огромная масса остальных тянула назад, травила их, сковывала, умерщвляла, всеми способами пыталась от них избавиться. И, несмотря ни на что, эти немногие одарённые шли вперёд, правда неприметными шагами, прибегая ко всяческим уловкам, соглашаясь на всяческие жертвы, и они тащили за собой и хоть чуточку подтягивали вперёд всю массу.

Ограниченные честолюбцы, пользуясь косностью и глупостью большинства, старались сохранить отжившие установления. Но свежий воздух французской революции веял над миром, и Наполеон , которым завершилась революция, готовился покончить с тем, что стало уже нежизнеспособным.

И уже не праздным звуком -
Силой действенной стала
Лучезарная идея
Братства, равенства, свободы.
Пусть ещё порой невзрачна,
Молода и неприметна,
Но она, идея эта,
Проложив себе дорогу,
Становилась ощутимым Фактом, жизненным законом,
И к исходу пятилетья,
К самому исходу века,
В мире стало чуть побольше
Разума, чей это было При его начале».

Лион Фейхтвангер, Гойя, или Тяжкий путь познания / Собрание сочинений в 12-ти томах, Том 10, М., «Художественная литература», 1967 г., с. 407-411.

Некоторые изобретения устаревают, но часть из них настолько хороша, что остаётся только слегка модифицировать.

1709: Фортепиано
Этот музыкальный инструмент был изобретён итальянским клавесинным мастером Бартоломео Кристофори, который с 1698 г. работал над созданием молоточкового механизма для клавесина (официальная дата - около 1709 г.). В 1711 г. механизм был подробно описан Сципионом Маффеи в венецианском журнале «Giornale dei letterati d’Italia». Инструмент был назван "клавесин с тихим и громким звуком", - пианофорте - а впоследствии закрепилось название фортепиано.

1714: Ртутный термометр
Современную форму термометру придал именно Фаренгейт и описал свой способ приготовления в 1723 г. Изначально Фаренгейт наполнял свои трубки спиртом и только после перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре "начала замерзания воды" он показывал 32°, а температура тела здорового человека во рту или под мышкой была равна 96°.

1752: Молниеотвод
Считается, что молниеотвод был изобретён Бенджамином Франклином в 1752 году, хотя существуют свидетельства о существовании конструкций с молниеотводами и до этой даты (например, Невьянская башня, а также бумажные змеи Жака Рома).

1775: Боевая подводная лодка
"Черепаха" является первой боевой подводной лодкой, построенная в штате Коннектикут в 1775 школьным учителем Дэвидом Бушнеллом. Главным назначением "Черепахи" является уничтожение вражеских судов путём прикрепления к ним взрывчатого вещества в пределах гавани.

1776: Секундомер
Упоминания о первых "настоящих" секундомерах появляются в конце XVII - начале XVIII веков. Примечательно, что механические секундомеры до сих пор используются.

1777: Циркулярная пила
К изобретателям циркулярной пилы могут быть отнесены англичанин Самуил Миллер из Саутгемптона, который получил патент в 1777 году на лесопильную ветряную мельницу. Однако его заявка только упоминает форму пилы, наверное, это было не его изобретение. Распространено мнение, что циркулярная пила была изобретена в Нидерландах в XVI веке, но никаких подтверждений или доказательств не обнаружено.

1784: Бифокальная линза
Первое упоминание бифокальных линз приписывается Бенджамину Франклину (1784 г.), когда он сообщил своему другу в письме, что придумал очки, в которых можно прекрасно видеть объекты как вблизи, так и удаленные на расстояние.
Бенджамин Франклин взял две пары очков, одни для дальнозоркости, а другие - для близорукости, и разрезал линзы этих очков пополам, затем вставил их в оправу: сверху половинки линз для близорукости, а снизу для дальнозоркости, так появились первые бифокальные очки.

1795: Консервы
Аппер очень долго проводил опыты, которые бы позволили сохранять продукты в съедобном состоянии. Считается, что именно в 1795 году Николя Аппер придумал консервирование продуктов. Изобретение Аппера пришло на смену привычным в те годы способам хранения продуктов - вялению и солению. Только в 1809 году Аппер, после проведения нескольких опытов, направил в адрес министра внутренних дел Франции письмо, в котором предложил новый способ - консервирование. В 1810 году Николя Аппер получил награду за изобретение лично из рук Наполеона Бонапарта.

Похожие статьи