Сборный железобетонный каркас многоэтажного жилого дома. Сборно-монолитный каркас: технология, особенности проектирования, эффективность. Положительные стороны монолитного каркаса

Основой сборно-монолитной технологии является несущий каркас, состоящий из обычных и преднапряженных железобетонных элементов заводского изготовления, таких как колонн, ригелей, пустотных плит перекрытий или плит несъемной опалубки. Сборно-монолитная технология позволяет собирать каркасы с большими пролетами между колоннами, что дает возможность реализовать любой творческий замысел по архитектурному решению. Пространственная устойчивость и жесткость каркаса обеспечивается жесткостью узлов сопряжения ригелей с колоннами и диафрагмами жесткости, которые включаются в схему каркаса исходя из результатов расчета. Бетонирование узлов сопряжения ригелей с плитами перекрытия и заполнение швов между плитами бетоном создает жесткий диск перекрытия. Жесткие узлы каркаса обеспечиваются с помощью пропуска горизонтальных арматурных стержней через тело колонны с последующим омоноличиванием.

Стальные анкерные соединения. Они обеспечивают стабильность конструкции при сильном ветре или землетрясении и обеспечивают надежность вашего здания. Поэтому они не мешают эксплуатации здания и не нарушают его элегантный внешний вид. Таким образом, ваше стальное здание будет выглядеть очень современно и стильно. На кровельной структуре вашего здания мы проведем эффективную теплоизоляцию, соответствующую функциональным требованиям помещений. На нем выполнена гидроизоляционная мембрана. Высококачественные материалы и минимальная высота крыши гарантируют безупречный дренаж.

Основные узлы

1) соединение через выпуски арматуры;

2) соединение через стакан подколонника.

Из фундамента оставляют выпуски рабочей арматуры, а в нижнем торце колонны устраивают отверстие. Выпуски арматурных стержней заводятся в фундамент на длину анкеровки, а в отверстия в колонне на длину, определяемую согласно расчету. После этого отверстия заполняют обычным или полимерраствором.

Стальные стены для вашего здания

В неприхотливых складах все необходимое для адекватной теплоизоляции - это минеральная вата, усиленная фольгой или даже лист со специальным антиконденсационным покрытием. Для отапливаемых помещений у вас есть выбор сэндвич-панелей различной толщины. При повышенных требованиях к огню идеальным решением является сборка кассет и минеральной ваты.

Независимо от типа теплоизоляции внешняя облицовка будет изготовлена ​​из оцинкованного стального листа с полимерным покрытием высокого качества - это гарантия долговечности вашего здания. Ищете нестандартное архитектурное решение? Тогда вы можете выбрать из нашего широкого спектра цветов. Но вы также можете выбрать нашу специальную архитектурную отделку. Или оставить стены полностью открытыми: все возможно.

Следует отметить, что в случае достаточной толщины плитной части фундамента (по расчету на продавливание), можно отказаться от устройства монолитного подколонника и устанавливать колонну непосредственно на фундаментную плиту, подошву ростверка или фундамента.

Второй вариант (соединение через стакан подколонника) является надежным типовым решением.

Дверь в стальное здание

Ваше здание должно быть функциональным и удобным для вас и ваших сотрудников, для ваших продуктов и исходных материалов. Преимущество вашей фрироматной структуры? Вы можете сделать двери вашего здания настолько большими, насколько вы хотите, и разместить их там, где хотите.

Абсорбирующие панели изготавливаются в стандартной комплектации на высоте 25 см от модуля абсорбера из дерева. Плинтусы воспроизводят длину абсорбирующих элементов, их высота и форма могут быть произвольными. Мы производим плинтусы, прямоугольные, трапециевидные, с дренажными отверстиями дренажной воды и т.д. из любого из этих типов можно построить любую извилистую стену, включая углы под прямым углом.

Оба узла являются жесткими. Однако наиболее предпочтительным является первый вариант, который имеет такие преимущества, как снижение трудоемкости выполнения подколонника, отсутствие выступающих частей подколонников в подвале здания.

Узел стыковки колонн является контактным стыком, и проектируется в соответствии с указаниями по проектированию данного вида стыков.

При использовании стальных столбов их фланец может быть покрыт поглотителем. Столбцы создаются либо в сборных, либо в монолитных патчах, либо в пилотах - в настоящее время это самый используемый метод. Цветные стены решаются либо путем окраски абсорбера в массе, либо путем добавления дополнительной качественной окраски стен. Второе решение позволяет использовать полный спектр цветов, идеальное объединение стен и ремонт поверхности, например, после шлифования.

В стенах можно создавать пластиковые орнаменты, созданные либо путем комбинирования различных типов и цветов абсорберов, либо путем вставки их с поворотом на 90 градусов. Система включает в себя стеклянные панели, которые либо выполнены в виде сборной железобетонной рамы со встроенным стеклом, либо стеклянные панели вставляются непосредственно во фланцы колонн, на которые они закрепляются металлическими профилями через резиновые уплотнения.

Выпуски арматурных стержней верхней колонны заводятся в предварительно устроенные отверстия в торце нижней колонны. Отверстия заполняются обычным раствором или полимерраствором. От типа заполнителя отверстия зависит длина выпусков арматуры.Для сопряжения колонн с ригелями, в теле колонны на уровне перекрытий предусматриваются участки с оголённой арматурой. Стыковка осуществляется за счёт пропуска дополнительных арматурных стержней через тело колонны.

Задняя сторона абсорбирующей и плинтусной панелей выполнена гладкой или шероховатой с так называемым «метеор». Эта обработка поверхности не только обладает эстетическим эффектом, но также позволяет растительности подниматься и тем самым закрашивать заднюю стенку стены. Обратная сторона может быть профилирована любой матрицей. Также возможно цветовое решение.

Система также решает зоны выхода - либо путем вставки панели с дверью, либо путем покрытия стен. Для этого решения подходят двухсторонние абсорбирующие панели. Рельсовые принадлежности. Часть системы для использования на рельсе также является проницаемой частью. Работа должна обеспечивать прохождение жизненно важных компонентов через стену с использованием инструментов и средств, обычно доступных и менее пяти минут.

Узел сопряжения является жестким и рассчитывается аналогично узлу монолитных конструкций.

В местах опирания плит перекрытия на ригель, пустоты плит заполняются бетоном на расстоянии 300 мм. Сопряжение ригеля с плитой перекрытия производится с помощью анкерных связей. Крепление анкерной связи к плите выполняется за счет установки анкера в вырезаемом по месту отверстии в плите, с последующим омоноличиванием. Необходимость установки анкерных связей определяется расчетом. И ставится в особых случаях.

Реконструкция подвесных потолков, распределение больших помещений как по горизонтали, так и по вертикали с использованием встроенной стальной конструкции. Укрепление потолков путем резки с помощью оригинальных панелей, ферм и мезонинных деревянных конструкций.

  • Статическое крепление неподходящего кольцевого корпуса.
  • Монолитная железобетонная структура перекрывает археологические раскопки.
  • Бетонные наклонные части - гаражные стены и половые стены.
Быстрое развитие ядерного оружия на протяжении многих лет и острая угроза их использования в случае, если холодная война стала реальной конфронтацией, привели к строительству зданий, которые не только обеспечивали бы защиту от взрывоопасной ударной волны, но и коллективную защиту от радиационного и светового излучения и, конечно же, химическая война.

При проектировании и строительстве зданий с применением технологии СМК в сейсмоопасных районах при использовании многопустотных плит безопалубочного формования дополнительно осуществляются мероприятия по доработке боковых поверхностей плит с целью создания «монолитных шпонок» во избежание смещения плит относительно друг друга в горизонтальной плоскости.

Поэтому с начала лет до падения железного занавеса были построены приюты разных типов и направлений. Специальная категория приютов - это так называемые защищенные рабочие места на высшем уровне командования, правительства и партийных чиновников, и никто не может пропустить коллективные приюты в рамках Гражданской обороны, чтобы скрыть часть гражданского населения.

Эти окутанные журналы были основаны на советском опыте и переводили законы со Второй мировой войны. Хотя они были построены в значительных количествах, но в дополнение к проблемному сопротивлению, эти здания также показали свою низкую прочность во влажных условиях и, следовательно, были исключены из записей за эти годы и больше не поддерживались.

Узел сопряжения ригеля с несъемной плитой опалубкой аналогичен узлу сопряжения многопустотной плиты с ригелем каркаса, но в этом случае вместо анкерных связей устанавливается надопорная арматура, сечение которой зависит от пролета плиты. В результате диск перекрытия имеет повышенную жесткость и работает по неразрезной схеме. Количество и расположение надопорной арматуры монолитной части плиты определяется расчетом.

Одновременно с ними были построены несколько более прочные кладочные приюты. Однако кладка состояла только из стен периметра, а потолок, соединение с траншеей или крытым входом были построены из деревянных бревен. Это, конечно, сказалось на их низкой долговечности и досрочном выходе на пенсию.

Общей чертой этих зданий было то, что сопротивление обстрелу фактически создавало только наземное покрытие. Защитные свойства здесь снова обеспечивались камнеобразной плоскостностью и заземлением, потому что, учитывая требования к ручной складке, отдельные сборные элементы не могли быть слишком тяжелыми.

Узел сопряжения диафрагмы жесткости и колонны осуществляется через:

1) закладные детали;

2) через петлевые выпуски, предусмотренные в боковых гранях диафрагмы и в колоннах;

3) через комбинацию первого и второго узла (комбинированный узел).

Первый способ является общеизвестным.

Второй является наиболее простым в исполнении. В данном случае колонна и диафрагма имеют выпуски арматуры на сопрягаемых гранях. После установки элементов в проектное положение узел омоноличивается.

Требование ручного складывания основывалось на тогдашней сильно продвинутой концепции так называемого «фортификации», т.е. элементов, которые были изготовлены в сборных моделях и могли перевозиться внедорожниками в пункт назначения. Само строительство управляли члены инженерных подразделений полков, дислоцированных на месте строительства.

Здание оборудовано электричеством и освещением. Он был выполнен из железобетонных балок, снабженных фиксирующими замками на одном или обоих концах, которые были сложен горизонтально в дополнение к дверной раме, и эта конструкция была разработана как концепция построения бревен, в которой было реализовано первое поколение чехословацких зданий из предварительно изготовленного железобетона. В рамках более поздней модернизации к укрытиям был добавлен спуск из вновь построенных сборных зданий.

Комбинированный узел применяется, в случае если невозможно устройство выпусков на боковой грани колонны, например при создании ядра жесткости здания, когда к колонне подходят 2 и более диафрагм. В данном случае на боковой грани колонны устанавливают закладные детали, а после выемки колонны из опалубки к ним приваривают петлевые выпуски.

Стимулирование их появления стало растущей угрозой применения ядерного оружия. Как было предложено по названию задания, цель заключалась в том, чтобы обеспечить команды полевой обороны с защитой от воздействия волн давления, теплового и радиоактивного излучения, включая модификацию коридоров, дверей, вентиляционных, затворных и смотровых отверстий.

В результате ускорения развития начальник ВЗВ согласился с слиянием контрольных и военно-технических испытаний, проведенных инженерным полком в ноябре. Во время испытаний рама перевозилась со свалки в 35 метрах от раскопок четырьмя солдатами. В яме восемь человек ехали по рельсам. 30 кадров загружали в течение 20 минут. Одной рабочей команде удалось построить приют через 6-8 часов.

Особенности проектирования



Основным преимуществом технологии СМК является то, что она позволяет реализовать любые архитектурно-планировочные решения, а также обеспечит высокую скорость строительства зданий из железобетонных конструкций заводского изготовления. Однако при проектировании следует учитывать и некоторые специфические особенности.

Кроме того, необходимы также дверные рамы для противонапорных и противогазовых дверей и железобетонных плит для покрытия покрытий и входного вала. Все эти элементы были размерны и адаптированы к массе для ручного и машинного монтажа. Коридор доступа мог быть грубо или сломан в соответствии с условиями местности. Воздух был втянут стальной трубкой диаметром 10 см над глушителем решетчатого противодавления. Объект может быть герметично закрыт дверцей противодавления и парой газонепроницаемых дверей не только против волны давления, но и с химическим оружием.

Основными нормативными документами, регламентирующими проектные решения сборно-монолитного каркаса, являются:

СНиП 52-01-2003 «Бетонные и железобетонные конструкции. Основные положения»;

Пособие к СНиП 2.03.01-84 «Проектирование железобетонных сборно-монолитных конструкций».

В общепринятой практике проектирование сборно-монолитных конструкций аналогично проектированию чисто монолитных или сборных железобетонных конструкций, при этом все расчеты выполняются по рабочей высоте сборного, а затем по рабочей высоте сорно-монолитного железобетонного элемента. Специфическим требованием к сборно-монолитным конструкциям является обеспечение прочности контактного стыка сборного элемента и монолитного бетона, поэтому при проектировании сборно-монолитных конструкций необходимо выполнить расчет прочности стыкового соединения. Варианты устройства стыка могут быть совершенно различными и зависят от вида поверхности сборного элемента (гладкая, особо гладкая, шероховатая, шпоночная). Следует отметить, что при проектировании сборно-монолитных конструкций необходимо обеспечивать прочность стыка при продольном сдвиге.

Покрытие на 150 см обеспечило экипажу защиту от света и радиоактивного излучения. Постоянно в здании хранились только аварийные инструменты; обычно 2 лопаты, 2 фаллоимитатора, топор и возможно бобина. Была также пятилитровая канистра для питьевой воды, ведро для олова и нефтяная лампа. Комплект для вентиляции постоянно устанавливался только в отдельных зданиях, большинство из них были собраны только при активации объекта. Аналогичным образом, экипаж будет делать простую мебель при броске. Для отдыха в приютах было пять двуспальных кроватей для 10 человек.

Также необходимо обратить внимание конструкторов на целесообразность проведения расчета на период монтажа и период транспортировки сборных железобетонных элементов. Так как расчетная схема во время монтажа существенно отличается от расчетной схемы после установки конструкций в проектное положение и омоноличивания стыков, а так же вследствие меньшей несущей способности сборного железобетонного элемента относительно сборно-монолитного следует в обязательном порядке проверить прочность сборного элемента при загружении его постоянной нагрузкой от веса перекрытий и свежеуложенного монолитного бетона. Расчет на период транспортировки заключается в определении действующих усилий во время погрузки/разгрузки, когда в конструкциях возможно возникновение усилий, противоположных по знаку эксплуатационным. Как и в расчете на период монтажа, в данном случае должна быть обеспечена жесткость и прочность сборного элемента, при этом возможна установка дополнительной арматуры, предназначенной лишь для восприятия транспортных нагрузок. Задачей конструктора является минимизировать расход такого рода арматуры, либо учесть ее в работе элемента в период эксплуатации.

Пример чехословацкого щита. Приюты были построены не только для нужд армии, но в меньшей степени и для пограничной охраны. Они были развернуты по мере необходимости по всей глубине защитной зоны, как правило, на ветхих склонах вблизи вершин возвышенностей, т.е. местах, которые нельзя было непосредственно выстрелить или наблюдать с территории противника. Они также были близки к обсерваториям и служили для нужд командующих гнилью, батальонами, полками или дивизиями. Большинство из этих приютов армии постепенно дезактивировались после распада коммунистического режима, и только двери и лестницы были оставлены внутри для легкого подъема контрольного входа.

Дополнительно необходимо учитывать следующие конструктивные требования и рекомендации:

1) в целях обеспечения технологичности изготовления и монтажа сборно-монолитных конструкций, а также снижения их стоимости необходимо назначать сечения сборного элемента наиболее простой формы и располагать в нем основную рабочую арматуру.

Образец из чешского радио - Радиа Леонардо. Что касается количества наземных зданий, выполняемых в укрытиях, то они не найдены. Из вышеупомянутого числа 445 приютов служили 277 в роли покоя и 168 работали. Во второй половине года ручная фальцовка больше не требовалась из-за большей механизации инженерных войск, и больше внимания уделялось повышению устойчивости. В результате была разработана конструкция опорных конструкций из бетонных панелей. Две его половинки были установлены в подготовленных раскопках мобильного крана.

Однако их производство, как сообщается, не использовалось в массовом производстве из-за высоких технических трудностей и, следовательно, более высокой цены. Однако, поскольку ручная установка не требовалась, большие и более массивные рамы могли использоваться как для самого убежища, так и для отдельного прохода и входного коридора. Еще одним улучшением стал аварийный выход.

2) следует предусматривать естественную или искусственную шероховатость поверхности сборного элемента, непосредственно соприкасающегося с монолитным бетоном.

3) следует применять бетон высокой прочности и арматуры класса не ниже А500.

Технико-экономические показатели

Помимо непосредственных факторов, влияющих на стоимость строительства каркаса здания (стоимость арматуры, бетона и пр.) следует отметить косвенные, такие как сложность плана здания, объем строительных работ, этажность здания и прочее. Важным является факт снижения собственного веса каркаса здания за счет применения многопустотных плит перекрытия, что положительно сказывается на стоимости и сроках устройства фундаментов, данное преимущество каркаса особенно заметно при возведении зданий в сложных инженерно-геологических условиях, где стоимость фундаментов велика.





Железобетонные каркасы предназначены для строи­тельства малоэтажных и многоэтажных гражданских (в том числе жилых) и промышленных зданий с норматив­ными нагрузками на 1 м 2 перекрытия от 3 до 30 кПа. Ве­личина нагрузки зависит от пролета ригеля, шага колонн, плит перекрытий, способа строительства, конструктив­ных особенностей каркасов.

Железобетонные каркасы подразделяются:

По способу обеспечения пространственной жесткости на конструктивно-статические типы: рамные, связевые, рамно-связевые;

По технологии возведения: сборные, монолит­ные, сборно-монолитные;

По типу горизонтальных несущих конструкций: с балочными перекрытиями, безригельные, с перекрытия­ми по фермам (в том числе высотой в этаж).

11.2.1. Каркасы с балочными перекрытиями

В основе проектирования сборных каркасных зданий лежат унифицированные конструктивные решения, пре­дусмотренные каталогами индустриальных серийных из­делий (например, серии 1.020.1-2с/89, ТК1-2). Такая практика принята в России и других странах. Некоторые серии являются межвидовыми - для применения в граж­данском и промышленном строительстве. Унификация осуществляется на основе методики открытой системы типизации и базируется на типизированных габаритных схемах геометрических параметров зданий.

В результате унификации определились следующие основные параметры каркасных зданий и их железобе­тонных элементов:

Высоты типовых этажей: 3,0; 3,3; 3,6; 4,2; 5,4; 6,0; 7,2 м;

Высоты первого повышенного этажа: 4,2 (при вы­соте типового этажа 3,3 м); 4,8 (3,6); 6,0 (4,8); 7,2 (6,0) м;

Высоты подвальных этажей: 3,2; 3,4; 3,7; 4,0; 4,6 м;

Высота технического этажа 2,4 м;

Высота технического подполья 2,0 м;

Высоты верхних зальных этажей: 4,2; 4,8; 5,4; 6,0; 7,0; 8,0 м;

Сечение колонн 400х400 мм;

Высота колонн: на 1, 2 и 3 этажа;

Ригели сборные и сборно-монолитные высотой сечения 450, 600 и 900 мм с жестким или шарнирным со­единением с колонной;

Плиты перекрытий: многопустотные (высота 220 мм); ребристые (300 и 400 мм); ребристые типа «ТТ» и «Т» (600 мм);

Размещение лестничных клеток в модульных ячейках колонн размерами 3,0х(6,0; 6,6; 7,2) м; 2,4х(4,8; 5,4; 6,0; 6,6) м.

Элементы сборных каркасов . Большое значение при массовом строительстве каркасных зданий имеют способы членения несущих конструкций на сборные элементы (рис. 12.43). От системы членения во многом зависят: технологичность строительства, стоимость изго­товления элементов на заводе и монтажа на строитель­ной площадке, эксплуатационные свойства соединений и надежность всего здания.

Рис. 12.43. Способы членения железобетонных каркасов на сборные элементы: а - двухэтажные колонны и однопролетные ригели; б - одноэтаж­ные колонны и однопролетные ригели; в - Г- и Т-образные ко­лонны и ригели-вставки; г - Т-образные элементы; д - Н-образ- ные рамы; е - то же, с наружными консолями; ж - П-образные рамы и ригели-вставки; з - двухэтажные рамы и ригели-вставки; и, к - крестообразные элементы; л - П-образные элементы; м - то же, с внутренними консолями; н - Г- и Т-образные элементы; о - Ж-образные элементы; п, р - двухпролетные рамы

При разработке железобетонных каркасов стремятся к укрупнению изделий, сокращению количества и упрощению стыков, повышению заводской готовности конструкций.

Наибольшее распространение имеет разрезка карка­са на линейные элементы - двухэтажные колонны и однопролетные ригели (рис. 12.43 а). Многие варианты с Г-, Н-, П-, Ж-образными элементами находят ограниченное применение из-за сложности изготовления, монтажа, пе­ревозки, хотя и имеют преимущество в сниженном коли­честве стыков.

Железобетонные колонны подразделяют:

По местоположению - рядовые, фасадные, тор­цевые, угловые, связевые и др.;

По этажности - одно-, двух-, трех- и четырех­этажные;

По несущей способности (например, 2000, 3000, 4000, 5000 кН);

По форме поперечного сечения - квадратные, прямоугольные и др.;

По типу стыка колонн между собой (рис. 12.49) - безметальные, с плоскими металлическими торцами, с центрирующими прокладками, с выпусками свариваемой арматуры при монтаже;

По условиям опирания ригелей - колонны с кон­солями (рис. 12.44), бесконсольные (рис. 12.45);

По классу бетона (например, В15; В25; В30; В45);

По способу армирования ствола колонны (рис. 12.46): с периферийным армированием, с центральным армированием, со спиральной арматурой, с металличе­скими сердечниками, с комбинированным армированием.

Рис. 12.44. Колонны с консолями для опирания ригелей: а, в - со скрытыми консолями; б - с трапециевидными консолями; г - с четырехсторонними консолями; д - с квадратной капителью; е - с консольным оголовком; ж, з - со стальными консолями

Рис. 12.45. Бесконсольные колонны: а - с цилиндрическими каналами сверху и снизу; б - с обнажен­ной арматурой в уровне перекрытия; в - с верхними выпусками арматуры; г - с горизонтальными арматурными выпусками для соединения с ригелями; д - с вилкообразным оголовком; е - с плечиками для опирания ригелей

Рис. 12.46. Варианты армирования колонн. Периферийное арми­рование под нагрузки, кН: а - 2000; б - 3000; в - 5000. Смешанное армирование под на­грузки, кН: г - 9000; д - 12000; е - 15000; ж - 9000; з - 12000; и - 15000

Рис. 12.49. Стыки колонн: а - контактный; б - плоский со стальными опорными пластина­ми; в - со сваркой продольной арматуры; г - со сваркой сталь­ных оголовников; д, е - болтовые; ж, з - на полимеррастворах; 1 - фиксирующий стержень; 2 - цементно-песчаный раствор; 3 - сетка косвенного армирования; 4 - продольная арматура колон­ны; 5 - стальная пластина; 6 - сварка; 7 - центрирующий бетон­ный выступ; 8 - стыковая ниша; 9 - стальной оголовник; 10 - на­кладка на сварке; 11 - болт; 12 - гнездо; 13 - полимерраствор; 14 - отверстие в колонне; 15 - центрирующая прокладка

Армирование ствола колонн производят арматур­ными стержнями диаметром от 12 до 40 мм из стали А-II и A-III (A-IV, A-V), что позволяет добиться эффективной градации их несущей способности. Продольная и попе­речная арматура (хомуты), сетки косвенного армирования и закладные детали объединяются в единый про­странственный арматурный каркас (рис. 12.46).

По экономическим соображениям и условиям унифи­кации элементов несущую способность колонн рекомен­дуется увеличивать путем повышения классов бетона и арматуры, а не за счет увеличения размеров поперечно­го сечения колонн.

При значительных усилиях в колоннах и ограниченных (по условиям унификации) размерах их поперечного се­чения колонны изготавливают с металлическими сердеч­никами, в качестве которых применяют полосы (пакет по­лос), наборное сечение из уголковой стали - «капуста», а также пучки свариваемой арматуры (рис. 12.47).

Рис. 12.47. Сборные железобетонные колонны с металлически­ми сердечниками: а - общий вид колонны; б - типы сечений стальных сердечников; в - стык колонны; г - деталь опирания на фундамент; 1 - выпуски арматурных стержней; 2 - стальные закладные детали; 3 - колон­на; 4 - стальной сердечник; 5 - слябы; 6 - полосы толщиной до 60 мм; 7 - уголки; 8 - сварной шов; 9 - стяжной болт; 10 - сталь­ная опорная плита; 11 - анкер


Рис. 12.48. Армирование консолей колонн: а - армирование с жесткими листами, привариваемыми к арма­туре; б - комбинированного типа без соединения с продольной арматурой колонн; 1 - арматурный каркас колонны; 2 - металло­конструкция консоли; 3 - стальной лист, приваренный к продоль­ной арматуре колонн; 4 - комбинированная конструкция консоли

Стыки колонн (рис. 12.49) подразделяют:

Олитные, сборно-мо­нолитные, со сваркой продольной арматуры и без сварки;

По форме: плоские, сферические, с подрезкой бетона в зоне стыка;

По усилению зоны стыка: металлические, безме­тальные.

Опирание колонны на фундамент осуществляется обычно через сборный железобетонный башмак (рис. 12.50 а). В узле такого типа передача усилий происходит через прочный растворный шов, который, будучи заклю­ченным в обойму, работает на смятие.

Рис. 12.50. Опирание железобетонных колони на фундамент: а - через башмак стаканного типа; б - через пирамидальный подколонник; 1 - колонна; 2 - башмак; 3 - подколонник; 4 - фун­дамент; 5 - бетон; 6 - выпуски арматуры

Другой тип опирания (рис. 12.50 б) с использовани­ем подколонников пирамидального вида обеспечивает унификацию всех узловых соединений, простоту изготов­ления подколонника и более простые приемы достижения необходимой точности монтажа.

Железобетонные ригели различают:

По местоположению в несущей системе: рядо­вые, фасадные, торцовые, лестничные, коридорные;

По несущей способности (в кН/м) ригеля (напри­мер, 72, 110, 145);

По пролету: однопролетные, двухпролетные, кон­сольные;

По форме поперечного сечения: прямоугольные, тавровые с полкой понизу, тавровые с полкой поверху, двутавровые, П-образные, спаренные, двухветвевые и др. (рис. 12.51 и 12.52);

По типу стыка с колонной: с подрезкой на опоре, с выпусками продольной арматуры, с вертикальными от­верстиями, с гнездами и т.п.;

По способу производства: предварительное на­пряжение с механическим натяжением арматуры, с элек­тротермическим способом натяжения арматуры и т.д.


Рис. 12.51. Ригели с опиранием на консоли колонн: а - с подрезкой на опоре; б - с подрезкой и горизонтальными проемами; в - с подрезкой и гнездами для опирания второсте­пенных балок; г - с зауженными опорными концами; д - с под­резкой на опоре и полками для опирания плит; е - с подрезкой и петлевыми выпусками поперечной арматуры; ж - с выпусками верхней продольной арматуры; з - то же, с полками; и - с выпус­ками поперечной арматуры; к - с верхними гнездами и отверсти­ями для установки болтов; л - двутаврового сечения с отверсти­ями для болтов; м - с гнездами для скрытых консолей колонн; н - спаренный; о - то же, трапециевидного сечения; п - спарен­ный из Г-образных элементов; р - двухветвевой


Рис. 12.52. Ригели бесконсольного опирания на колонны: а - с петлевыми выпусками продольной арматуры в трапецие­видных гнездах; б - с полуцилиндрическими вертикальными гнездами; в - с вертикальными отверстиями; г - П-образного сечения; д - с полками и выпусками продольной арматуры; е - с выпусками продольной арматуры; ж - с выпусками продольной арматуры в гнездах и петлевыми выпусками поперечной армату­ры^ - таврового сечения с выпусками продольной арматуры; и - с выпусками продольной и поперечной арматуры

Ригели каркасов часто имеют Т-образную форму по­перечного сечения с полками понизу для опирания на них плит перекрытий. Такая форма ригеля позволяет умень­шить на толщину плиты перекрытия размер выступающей в интерьер части ригеля и тем самым снизить высоту эта­жей здания. Ригели в опорной части имеют подрезки, со­ответствующие размеру консоли колонн, в результате чего сопряжение ригеля с колонной осуществляется без выступающих в интерьер консолей или их частей (имита­ция рамного узла). Ширина ригелей понизу обычно равна ширине колонн.

Ригели изготавливают из бетона классов В25, В30 и В40 и армируют пространственными каркасами, в кото­рые входят плоские каркасы, сетки и закладные детали, объединенные с помощью сварки.

Диафрагмы жесткости в системе сборного каркаса формируются из сборных железобетонных элементов (ос­новное решение), а также выполняются из монолитного железобетона в виде замкнутых ядер жесткости (рис. 12.54 а) и решетчатых металлических конструкций (рис. 12.56).


Рис. 12.54. Варианты формирования диафрагм жесткости: а - замкнутых профилей; б - открытых; в - плоских

Рис. 12.56. Металлические связи сборного железобетонного уни­фицированного каркаса: а - полураскосные; б - портальные; 1 - сборные железобетон­ные колонны; 2 - связи; 3 - элемент для крепления связей к ко­лоннам; 4 - закладные детали

Сборные элементы диафрагм жесткости подразделяют:

По виду поперечного сечения верхней части: кон­сольные (одно- и двухконсольные), бесконсольные;

По типу горизонтального стыка диафрагм: с за­кладными деталями в горизонтальном шве, со шпонками, с безметальным контактным стыком;

По наличию дверных проемов: проемные, бес­проемные (глухие), Г-образные (флажок).

Как правило, диафрагмы жесткости - панели высотой на один этаж толщиной 140, 160, 180 мм.

Панели диафрагм жесткости устанавливают в проле­тах от колонны до колонны и рассчитывают на совмест­ную с ними работу. В плане панели всегда устанавливают по координационным осям, а по вертикали - таким обра­зом, чтобы швы панелей совпадали с отметкой верха пе­рекрытий. Между собой и с колоннами в вертикальных швах панели связываются в монтажных узлах сварными соединениями, обеспечивающими передачу вертикаль­ных сдвигающих усилий. Передачу горизонтальных сдви­гающих усилий обеспечивают монолитные шпоночные соединения панелей в горизонтальных швах (рис. 12.55). Все зазоры в стыках и примыканиях панелей к колоннам и плитам перекрытий зачеканивают цементным раство­ром и бетоном.


Рис. 12.55. Примеры компоновки диафрагм жесткости в каркас­ных зданиях

Общая устойчивость здания обеспечивается совмес­тной работой горизонтальных дисков перекрытий и вертикальных диафрагм жесткости. Для этого необходимо уст­ройство как минимум трех плоских диафрагм жесткости с горизонтальными осями, не пересекающимися в одной точ­ке, т.е. в каждом температурном блоке здания необходимы две диафрагмы одного направления и одна - другого.

Для увеличения жесткости связевых систем рекомен­дуется объединять плоские диафрагмы жесткости в про­странственные (рис. 12.54).

Диафрагмы жесткости следует распределять равно­мерно по плану здания (рис. 12.55).

В отдельных случаях, например при сложной конфи­гурации, диафрагмы жесткости выполняются в монолит­ном железобетоне. При этом, если монтаж основных не­сущих конструкций здания опережает производство ра­бот по возведению монолитных диафрагм, то в местах их установки иногда устраивают металлические связи, слу­жащие в последующем арматурой монолитных диафрагм.

В ряде случаев и, в частности, в производственных зданиях, в связи с требованиями технологии постановка сборных панелей невозможна или связана с потерями производственно-функционального характера. В этих случаях допускается устройство металлических связей (диафрагм жесткости) полураскосного или портального типа (рис. 12.56).

Сопряжения ригелей с колоннами . В зависимости от типа каркаса, назначения, разрезки на элементы и спо­собов их сопряжения стыки элементов воспринимают различные усилия сжатия, растяжения, изгиба или среза, раздельно или в их сочетании друг с другом.

В сборных и сборно-монолитных каркасах сопряже­ние ригеля с колонной (рис. 12.57-12.61) может осуще­ствляться шарнирно или жестко, на сварке или на болтах, с опиранием на консоли колонн или без консолей.

Рис. 12.57. Сварные сопряжения ригеля с колонной: а - шарнирное со скрытой консолью; б - жесткое с открытой кон­солью; в - опирание ригеля на стальной башмак; 1 - скрытая опор­ная консоль колонны; 2 - открытая консоль; 3 - стальной опорный башмак; 4 - закладная деталь консоли колонны; 5 - закладная деталь ствола колонны; 6 - закладная деталь ригеля; 7 - соединительная пластина; 8 - сварка; 9 - ванная сварка; 10 - выпуск арматуры колонны; 11 - выпуск арматуры ригеля; 12 - верх­няя арматура ригеля; 13 - нижняя арматура ригеля; 14 - стальная обойма опорной части ригеля; 15 - бетон замоноличивания

Рис. 12.58. Болтовые сопряжения ригеля с колонной: а - в уровне верха ригеля; б - по оси ригеля; 1 - консоль колонны; 2 - гнездо; 3 - отверстие (канал); 4 - соединительные тяги (высо­копрочные болты); 5 - сварка стальных листов; 6 - резиновое кольцо


Рис. 12.59. Сопряжение ригеля с колонной с помощью консоль­ного оголовка:

1 - колонна; 2 - консольный оголовок; 3 - ригель; 4 - арматур­ный выпуск колонны; 5 - арматурный выпуск оголовка; 6 - плита перекрытия; 7 - цементно-песчаный раствор

Рис. 12.60. Бесконсольные сопряжения ригеля с колонной с замоноличиванием: а - по нормальным хомутам; б - по наклонным хомутам; в - с на­клонными раскосами; 1 - арматурный выпуск ригеля; 2 - арма­турный выпуск колонны; 3 - сварка ванная; 4 - хомут; 5 – вут ко­лонны; 6 - раскос; 7 - уголковый выпуск из колонны; 8 - бетон замоноличивания




Рис. 12.61. Бесконсольные сопряжения ригеля с колонной (плат- форменно-штепсельные стыки колонн): а - с помощью стального трубчатого стержня; б - с помощью ар­матурных выпусков колонны; 1 - стальной трубчатый стержень; 2 - выпуски продольной арматуры колонны; 3 - гнездо в нижней части колонны; 4 - отверстие для инъецирования полимерра- створа; 5 - ниша для прокладки вертикальных коммуникаций; 6 - канал для прокладки горизонтальных коммуникаций; 7 - сквоз­ное отверстие в ригеле

Шарнирные сопряжения ригелей с колоннами (на­пример, рис. 12.57 а) применяются при связевом типе каркаса. Ригель опирают на выступающие из колонн ко­роткие железобетонные или стальные консоли, распола­гаемые под ригелем либо в подрезках ригеля (скрытые консоли). Стыки рассчитываются как свободно лежащие балки на консолях.

Широкое распространение получили жесткие стыки с открытыми железобетонными консолями (рис. 12.57 б). По верху консоли закреплен стальной лист. По концам ри­гелей также предусмотрены опорные стальные листы. При установке ригелей на консоли эти листы соединяются между собой фланговыми швами дуговой электросваркой. Концы верхней арматуры ригелей выступают из бетона и соединяются с горизонтальными концами арматуры, выступающими из колонны. Соединение стержней осуществ­ляется полуавтоматической сваркой в медных формах с заплавлением зазора между торцами арматуры. Швы меж­ду торцами ригелей и колоннами и зона сварки верхней арматуры заполняются бетоном. Такой стык является жес­тким соединением. Каркас из сборных элементов таким образом становится рамной конструкцией.

В зарубежной практике часто применяются болто­вые стыки ригелей с колоннами с опиранием концов ри­гелей на консоли колонн (рис. 12.58). Ригели между со­бой соединяются через колонну соединительными тяга­ми (средний узел) или высокопрочными болтами (край­ний узел). Анкерные приспособления для концов ригелей располагаются в специальных гнездах и способны пере­давать значительные вертикальные и горизонтальные на­грузки. В случае расположения соединительных тяг в верхней части ригеля передается также и достаточно большой изгибающий момент.

Довольно часто применяются бесконсольные со­пряжения ригеля с колонной, монтируемые на строитель­ной площадке с установкой нормальных (рис. 12.60 а) и наклонных (рис. 12.60 б) хомутов с замоноличиванием бетоном зоны у грани колонны. Сварка выпусков стерж­ней из колонны и ригелей после расстановки хомутов осу­ществляется в полуцилиндрических подкладках. Такое сопряжение передает значительные горизонтальные силы и достаточно большие изгибающие моменты.

Российскими специалистами разработана конструк­ция бесконсольного сопряжения ригеля с колонной с при­менением сварных деталей в виде раскосных стержней (рис. 12.60 в). Конструкция еще до замоноличивания по­лучает значительную жесткость и может воспринимать необходимые монтажные усилия без временных опор.

Конструкции каркаса серии 1.020.1-2с/89 предназ­начены для применения в строительстве общественных и производственных зданий со следующими объемно-планировочными параметрами (рис. 12.62; табл. 12.1):

Высота этажа: 3,3; 3,6; 4,2; 4,8; 5,4; 6,0; 7,2 м;

Шаг колонн в направлении ригелей (поперек зда­ния) и направлении плит перекрытий (вдоль здания): 3,0; 6,0; 7,2; 9,0 м;

Этажность: 1-16 этажей;

Расчетная нагрузка на перекрытие (без учета собственного веса плит): от 4 до 21 кН.


Рис. 12.62. Схемы каркасов серии 1.020.1-2с.

Разрезы: а - зального помещения; б - двухэтажных зданий; в - многоэтажного здания. Конструктивно-статические схемы: г - рамная в поперечном и продольном направлении; д - рамная в поперечном и неполная рамная в продольном; е - рамно-связевая; ж - рамно-связевая в поперечном направлении; з - рамно-связевая в продольном, и - план расположения элементов каркаса

Таблица 12.1. Объемно-планировочные парамет­ры каркасов серии 1.020.1 -2с/89


В конструкциях серии предусмотрена возможность устройства зальных помещений с расположением залов на втором этаже двухэтажных зданий, а также отдельно стоящих залов (рис. 12.62 а, б).

Конструкции серии запроектированы для примене­ния в рамных и рамно-связевых схемах несущих каркасов зданий. Применяются следующие конструктивные схемы:

Рамная в поперечном и продольном направлени­ях (рис. 12.62 г);

Рамная схема в поперечном и неполная рамная в продольном направлении (рис. 12.62 д);

Рамно-связевая схема с применением диафрагм жесткости в поперечном и продольном направлениях (рис. 12.62 е);

Рамно-связевая в одном из направлений (рис. 12.62 ж, з);

Возможные комбинации вышеперечисленных схем.

Колонны запроектированы единого сечения 400х400 мм для зданий от 1 до 16 этажей. В местах примыка­ния поперечных и продольных ригелей колонны снабже­ны выпусками арматуры в верхней зоне и уголковыми стальными консолями в нижней зоне узла, предназначен­ными для соединения на сварке с соответствующими вы­пусками из ригелей в жестком рамном узле. Уголковые выпуски одновременно служат и монтажными столиками для удобства установки ригелей без применения монтаж­ных приспособлений.

Согласно ориентации колонн в плане здания они под­разделяются на колонны (рис. 12.63), устанавливаемые:

По внутренним и наружным осям с жесткими рамными узлами в поперечном направлении (тип 1К);

По внутренним осям с жесткими рамными узла­ми в поперечном и продольном направлениях; по наруж­ным осям в местах примыкания консольных ригелей бал­конов (2К);

По наружным поперечным осям с жесткими рам­ными узлами; по внутренним осям у лестничных клеток и температурных швов (3К);

По наружным продольным осям с жесткими узла­ми (4К);

В углах здания (температурного блока) (5К, 5Кн).

Рис. 12.63. Колонны каркаса серии 1.020.1-2с: а - типы колонн по ориентации в плане; б - колонна одноэтажная средняя (типа 2КС); в - сварной стык колонн; г - сечение колон­ны

По расположению по высоте здания колонны подраз­деляются на нижние, средние, верхние и бесстыковые - на всю высоту здания (от 1 до 3 этажей).

Горизонтальными элементами рам каркаса являются ригели поперечного и продольного направлений. Несу­щие вертикальную нагрузку ригели разработаны с полка­ми для опирания плит перекрытий двух типов: многопус­тотных плит высотой 220 мм и ребристых - 300 мм.

Верхняя зона ригелей законструирована с обнажен­ной поперечной арматурой по всей длине элемента или на приопорных участках. При монтаже в оголенной верх­ней зоне устанавливается продольная рабочая арматура, стыкуемая с соответствующими выпусками арматур из колонн в количестве 2 или 4 штук на ванной сварке.

По характеру работы и расположению в схеме здания ригели (рис. 12.64) подразделяются на типы:

2Р - для двухстороннего опирания плит, в том числе и лестничного марша;

2PЛ - для двухстороннего опирания плит, в том числе и лестничной балки БЛ;

1Р - торцевые для одностороннего опирания плит, в том числе и лестничного марша;

1РЛ - торцевые для одностороннего опирания плит и лестничной балки БЛ;

1РП - продольные для одностороннего опирания плит и лестничного марша;

1РПЛ - продольные для одностороннего опира­ния плит и лестничной балки БЛ;

РП - бесполочные, устанавливаемые по про­дольным наружным и внутренним осям здания;

1Р6.2.26 - для одностороннего опирания лестнич­ных маршей (промежуточных площадок) в пролете 3 м;

Р6.2.53 - для опирания плит типа П, плит-оболо­чек типа КЖС пролетом 18 м и ребристых плит 3 х 12 м, устанавливаемых в покрытиях зальных помещений;

РК, РКП - консольные для устройства балконов вылетом 1,2 и 1,8 м;

Б - окаймляющие балки балконов;

БЛ - лестничные балки для устройства лестнич­ной клетки в пролетах 7,2 и 9 м.


Рис. 12.64. Ригели каркаса серии 1.020.1-2с: а - типы ригелей; б - конструктивное решение ригеля 2Р 4.53; в - сопряжение ригеля с колонной; 1 - выпуски продольной рабочей арматуры; 2 - вставной стержень на сварке; 3 - мелкозернистый бетон

Диафрагмы жесткости (рис. 12.65) предназначены для строительства зданий при высоте типовых этажей 3,3; 3,6 и 4,2 м, а также техподполья высотой 2,0 м. Панели диафрагм устанавливаются в пролетах рам (в осях) 6,0 и 7,2 м как по поперечным, так и по продольным осям.


Рис. 12.65. Диафрагмы жесткости каркаса серии 1.020.1-2с: а - вид диафрагмы жесткости; б - крепление диафрагмы жесткости к колонне; в - сопряжение диафрагм жесткости в зоне примыка­ния к колонне; 1 - выпуски вертикальной арматуры; 2 - выпуски продольной арматуры; 3 - петлевые выпуски; 4 - закладная деталь для соединения с колонной; 5 - армирование панели; 6 - диафрагма жесткости; 7 - стальной стержень; 8 - колонна

Диафрагмы жесткости представляют собой Т- и Г- образные железобетонные панели со стенками толщиной 160 мм и полками шириной 550 и 480 мм соответственно. Г-образные панели устанавливаются в лестничных клет­ках вдоль лестничных маршей.

Диафрагмы жесткости, соединенные с колоннами кар­каса и между собой (рис. 12.65 б, в), образуют вертикаль­ные элементы жесткости рамно-связевых систем каркаса, воспринимающие усилия от вертикальных и горизонталь­ных нагрузок. Под диафрагмы устанавливаются монолит­ные фундаменты по проекту. Панели диафрагм стыкуются с фундаментом аналогично стыку диафрагм между собой.

Унифицированный каркас серии ТК1-2 (территори­альный каталог для строительства в Москве) предназначен для строительства гражданских и промышленных много­этажных зданий. Габариты легкого (рис. 12.66) и тяжелого (рис. 12.67) каркасов основаны на укрупненном модуле 6М (600 мм) в плане и 3М и 6М - по вертикали. Ряд предпоч­тительных координационных размеров составляет:

Высоты этажей: 3,0; 3,3; 4,2; 4,8; 6,0 м;

Пролеты ригелей: 1,8-9,0 (через 0,6) и 12,0 м;

Пролеты плит перекрытий: 3,0; 5,4; 6,0; 6,6; 7,2 и

Ризалиты: 1,2; 1,8; 2,4 и 3,0 м.


Рис. 12.66. Компоновочная схема легкого каркаса (по серии TK1-2) с консольными свесами: КР - колонна рядовая; КВР - колонна верхняя рядовая; КК - ко­лонна под консольный ригель; Р - ригель: РК - ригель консоль­ный. Размеры: а - 6000; 9000; б - 1800-9000 через 600; в - 1550; 2150; 2750; г - 2400; 3000; 3300; 3600; 4200; 4800; 6000; 7200; д - 3000; 3300; 3600; 4200; 4800; 6000; е - 3300; 3600; 4200; 6000


Рис. 12.67. Компоновочная схема тяжелого каркаса (по серии ТК1-2) с размерами: а - 6000; 9000; б - 3000; 6000; 9000; 12000; в - 2750; г - 3300; 3600; 4200; 4800; 6000; 6600; д - 3000; 3300; 3600; 4200; 4800; 6000; е - 2400; 3000; 3300; 3600; 4200

Компоновка несущих железобетонных элементов здания основывается на связевой схеме, где простран­ственная жесткость обеспечивается совместной работой взаимосвязанных вертикальных (стен-диафрагм) и гори­зонтальных (перекрытий) жестких дисков. Каркас может компоноваться с продольным, поперечным и комбиниро­ванным расположением ригелей.

Колонны с консолями имеют единое сечение 400х400 мм, их несущая способность варьируется изменени­ем класса бетона и процентом армирования, а при боль­ших нагрузках - переходом к жесткой арматуре (из сталь­ных профилей). Колонны имеют одно- или двухэтажную разрезку по высоте здания с расположением стыка меж­ду собой на высоте 0,7 м от верха плиты перекрытия.

Номенклатура включает колонны рядовые, фасадные и лоджий. Рядовые колонны устанавливаются по внутрен­ним осям здания, имеют две консоли для опирания риге­лей. Фасадные колонны размещают по наружным осям и имеют две различные консоли (одну для опирания риге­ля, другую - пристенной плиты перекрытия). Колонны лоджий и балконов, устанавливаемые по фасадной оси, могут иметь наружную консоль с увеличенным вылетом 1,1 или 1,8 м для опирания плит балконов или лоджий.

Ригели преимущественно имеют тавровое сечение. В соответствии с расположением в плане здания различа­ют следующие типы ригелей:

Рядовые пролетом от 3 до 12 м таврового сече­ния высотой 450, 600 и 900 мм;

Фасадные пролетом от 1,8 до 9,0 м (через 0,6 м) Z-образного сечения шириной 690 мм и высотой 480 мм;

Коридорные пролетом от 1,8 до 3,6 м таврового сечения высотой 300 мм;

Лестничные (для опирания лестничных маршей) пролетом 6,0; 6,6 и 7,2 м с уголковым профилем сечения;

Консольные (для образования свесов) таврового сечения высотой 600 и 900 мм.

Ригели соединяются с колонной узлом со скрытой железобетонной консолью (см. рис. 12.57а) при помощи сварки закладных элементов.

Панели стен жесткости (диафрагмы) одноэтажные железобетонные толщиной 180 мм, плоские с одно- или двухсторонними полками для опирания плит перекрытий. По вертикальным граням диафрагмы жесткости соединя­ют с колоннами или между собой не менее чем в двух местах по высоте этажа стальными сварными связями по закладным деталям.

В практике строительства Германии наиболее совер­шенной полносборной каркасной конструктивной систе­мой является серия железобетонных конструкций КВМ (рис. 12.68), предназначенная для строительства массовых общественных, а также производственных и вспомогательных зданий. Каркас КВМ решен по связевой схеме с шарнирным опиранием ригелей на колонны, го­ризонтальными диафрагмами жесткости из дисков перекрытий и вертикальными панельными стенами жесткости или монолитными ядрами жесткости.

Рис. 12.68. Каркасное здание системы КВМ (Германия): а - основные элементы здания; 6 - одноригельное решение узла каркаса; в - двухригельное; 1 - фундамент стаканного типа под колонну; 2 - ленточный монолитный фундамент под стену подва­ла; 3 - колонна; 4 - ригель; 5 - панель стены подвала; 6 - рядовая горизонтальная панель наружной стены; 7 - угловой элемент сте­ны; 8 - рядовая плита перекрытия; 9 - плита-распорка; 10 - па­нель стены вертикальной разрезки; 11 - лестничная площадка; 12 - лестничный мари); 13 - панель стены лестничной клетки

Типовые конструкции КВМ допускают компоновку каркаса с продольным или поперечным расположением ригелей. В зависимости от нагрузки применяют одиноч­ные или сдвоенные ригели. В первом случае ригель уста­навливают в гнездо на торце колонны (рис. 12.68 б), во втором - два параллельных ригеля опирают на полки в боковых вырезах колонны (рис. 12.68 в). Сетка колонн - от 4,8х4,8 до 7,2х12 м с промежуточными значениями, кратными 1,2 м. Высота этажей от 3,3 до 6 м.

В последние годы в России применяется каркас для жилых, общественных и производственных зданий до 30 этажей в сборно-монолитном варианте (рис. 12.69). Особенностью этого каркаса является высокая формооб­разующая способность на ортогонально-диагональной сетке колонн при соответствующем расположении риге­лей. Имеется возможность проектирования многоуголь­ных, треугольных, овальных, круглых и других сложных форм плана зданий.

Рис. 12.69. Сборно-монолитные каркасы (основные узлы):

а - ситуации расположения колонн и ригелей; б - сопряжение ригелей с колонной; в - опирание железобетонных плит на ригель; г - опирание сборно-монолитных плит на ригель; д - сопряжение диафрагмы жесткости с колонной; 1 - колонна, 2 - ригель; 3 - диафраг­ма жесткости; 4 - арматурные выпуски; 5 - дополнительная арматура; 6 - арматурная сетка; 7 - монолитный бетон; 8 - монтажный (временный) хомут; 9 - опалубочная плита; 10 - сборная плита перекрытия

Сборными элементами каркаса являются: колонны, ригели, диафрагмы жесткости, плиты перекрытий. В мо­нолитном варианте оригинально решается узел «ригель- колонна».

Колонны высотой в 1-4 этажа имеют квадратные (со стороной 250; 300; 350; 400 и 500 мм) и прямоугольные сечения (от 250х300 до 400 х 600 мм). В уровне пере­крытий колонны имеют свободные от бетона арматурные участки (оголенную арматуру), внизу - выпуски продольной арматуры, вверху - каналы для штепсельного стыка колонн по высоте (рис. 12.45 б). Высота этажей 2,8 м (для жилых зданий) и 3,3 м (для общественных и производ­ственных зданий).

Ригели прямоугольного сечения шириной 300 мм и высотой 200 мм (при сборно-монолитном перекрытии) или 250 мм (при сборном перекрытии) имеют приопорные гнезда, в которые выпущены стержни нижней рабо­чей арматуры из проволочных канатов типа 7К (рис. 12.52 ж). В верхней части ригелей имеются петлевые выпуски поперечной арматуры. Длина ригелей в осях ортогональ­ной сетки колонн от 1,8 м до 6 м (через 0,6), по диаго­нальным осям - по заказу до 6 м.

Сопряжение ригелей с колоннами (рис. 12.69 б) осу­ществляется следующим образом: ригели опирают на монтажные хомуты колонн и подпирают временными стойками; проволочную арматуру ригелей отгибают и за­водят в свободное пространство между продольной ар­матурой колонны; в гнезда ригелей укладывают два ар­матурных стержня с загнутыми вверх концами; два стер­жня дополнительной арматуры устанавливают в уровне верха выпусков поперечной арматуры ригелей на длину 1,2-2,4 от колонны в две стороны; положение устанавли­ваемых дополнительных стержней арматуры диаметром 20-32 мм фиксируется проволочной вязкой к арматурным стержням сборных элементов; на ригели опирают сбор­ные плиты перекрытий (рис. 12.69 в), имеющие выемки в верхней приопорной части, в которые укладываются ар­матурные стержни; все арматурные выпуски и установ­ленные стержни обетонируются.

Перекрытие может выполняться в сборно-монолитном варианте (рис. 12.69 г). Для этого используют опалу­бочные плиты толщиной 60 мм с преднапряженной про­волочной арматурой, имеющей выпуски с торцов опорных сторон плит. По плитам укладывается слой бетона толщи­ной 100 мм с арматурными сетками в верхней зоне.

Сопряжение диафрагм жесткости с колоннами осу­ществляется посредством петлевых горизонтальных вы­пусков из этих элементов с установкой вертикальных со­единительных стержней и замоноличиванием стыка бето­ном (рис. 12.69 д).

В Армении получил распространение оригинальный метод строительства сейсмостойких жилых домов повы­шенной этажности - с пространственным сборно-монолитным рамным каркасом (рис. 12.70). Основной эле­мент каркаса - прямоугольная железобетонная рама, раз­меры которой соответствуют высоте этажа и шагу колонн здания. Обычно длина рамы равна 6,1 м, высота - 3,0; 3,3; 3,6 м; сечение - 15х30 см. Колонны каркаса образуются четырьмя стойками рам; в зависимости от нагрузки, при­ходящейся на колонны, их сечение можно увеличить путем раздвижки рам. Таким образом, в соответствии с приня­тым объемно-планировочным решением и расчетными усилиями и без изменения размеров сборных рам получа­ют колонны квадратного или прямоугольного сечений.


Рис. 12.70. Сборно-монолитный рамный каркас: а - сборные рамы каркаса; б - схема образования каркаса; 1 - арматурные выпуски; 2 - поверхность рамы, обращенная к поло­сти замоноличивания; 3 - продольные рабочие стержни стоек; 4 - рама нижележащего этажа; 5 - рама вышележащего этажа

Каркас здания собирается из стандартных изделий одного типоразмера в продольном и поперечном направ­лениях. Перекрытия выполняются из типовых плит. Жест­кость каркаса обеспечивается сплошным сечением риге­лей и колонн (их рамным исполнением) и замоноличива­нием стыков. При увеличении высоты здания до 14-20 этажей эту рамную схему превращают в рамно-связевую путем установки между рамами вертикальных диаф­рагм жесткости (в пазы колонн и ригелей).

Рамный каркас - универсальная конструктивная сис­тема, на основе которой можно создавать самые разно­образные планировочные и объемные композиции. Жест­кая объемная структура из рам может развиваться по го­ризонтали или по вертикали, заполнять собой все про­странство или оставлять свободные промежутки, легко приспосабливаясь к рельефу местности.

При необходимости обеспечения свободного внут­реннего пространства (на всех или некоторых этажах) и одновременного повышения жесткости здания применяются всевозможные каркасы с использованием балок-стенок или высоких ригелей в виде ферм (рис. 12.71).


Рис. 12.71. Каркасы с железобетонными балками-стенками и ригелями-фермами:

а-в - конструкции наружных стен в виде единой балки-стенки; г-з - ригели-фермы с расположением через этаж; и, к - ригели-фермы через два или три этажа

Вся конструкция наружных стен может быть выполне­на как единая балка-стенка, опирающаяся на колонны или портальные конструкции первого этажа. Такие балки на­ружных стен располагаются параллельно продольной оси здания (рис. 12.71 а), по периметру зданий при их фор­ме, близкой к квадрату (рис. 12.71 б), или пересекают здание в двух направлениях, образуя жесткую простран­ственную систему (рис. 12.71 в).

Ригели высотой в один этаж могут устанавливаться так, чтобы в уровне одного (через этаж) создавалось сво­бодное пространство. В этом случае они располагаются вдоль двух параллельных сторон здания, по всем четы­рем сторонам (рис. 12.71 г, д) или в виде пространствен­ной решетки (рис. 12.71 е).

Параллельные фермы высотой на этаж могут распо­лагаться по ширине здания вразбежку (рис. 12.71 ж) или перпендикулярно друг другу (рис. 12.71 з).

При расположении ригелей-ферм через два или три этажа по высоте дополнительные перекрытия устраива­ются на стойках по верхним поясам или подвешиваются к нижним поясам ферм (рис. 12.71 и, к).

Для некоторых производственных зданий целесооб­разно применять каркасы с межферменными этажами (рис. 12.72). Большие пролеты зданий (12, 18, 24 м) перекрывают рамно-раскосными или безраскосными железо­бетонными фермами. В пределах конструктивной высоты ферм устраивают помещения, в которых размещают инже­нерное оборудование и коммуникации. Они также служат бытовыми, складскими и другими вспомогательными по­мещениями. Высота межферменных этажей - от 2,4 до 3,6 м, а производственных этажей - 3,6; 4,8; 6,0 м.

Рис. 12.72. Решение многоэтажного здания с межферменными техническими этажами: а - фрагмент поперечного разреза; б - ферма-ригель безраскос­ная; в - ферма-ригель рамно-раскосная

Железобетонные фермы являются ригелями много­этажного каркаса, поэтому их жестко соединяют с колон­нами для образования рам в поперечном направлении. В продольном направлении каркас решается по связевой схеме с постановкой вертикальных металлических связей в каждом деформационном блоке здания.

Для зданий с межферменными этажами применяют плиты перекрытий двух типов. На верхний пояс ферм ук­ладывают П- или 2Т-образные ребристые плиты, посколь­ку они воспринимают нагрузку производственных поме­щений. На нижний пояс ферм опирают многопустотные или специальные санитарно-технические плиты со встро­енными светильниками и воздухораспределительными вентиляционными каналами.

Каркасы из монолитного железобетона . Условием применения монолитного железобетона для возведения каркасных зданий является, прежде всего, развитая тех­нологическая база: индустриальные унифицированные системы опалубок; наличие пластичных и удобоукладываемых бетонных смесей; применение бетононасосов и другого оборудования для подачи бетонной смеси на проектные отметки.

Достоинства монолитных каркасов проявляются в широких возможностях архитектурно-конструктивного формообразования:

Возможность проектирования самых разнооб­разных структур (рис. 12.73-12.75);

Вариантность шага колонн и формы их сечения;

Устройство в зданиях консолей, выступов, запа­дающих участков и других изменений формы;

Использование колонн (в т.ч. наклонных) и раз­личных ригелей, позволяющих улучшить условия работы конструктивной системы и вместе с тем придать зданию архитектурную выразительность;

Изменение высоты этажей в пределах одного здания.




Рис. 12.73. Монолитные железобетонные каркасы с главными и второстепенными балками: а - типы конструктивно-планировочных ячеек; б - схемы распо­ложения элементов; в - формы сечений колонн; г - формы глав­ных балок-ригелей переменного сечения; д - фрагменты разре­зов; 1 - колонна; 2 - главная балка; 3 - второстепенная балка; 4 - монолитная плита перекрытия

Рис. 12.74. Монолитные железобетонные каркасы с перекрытия­ми кессонного типа: а - конструктивно-планировочные ячейки; б - фрагмент разреза


Рис. 12.75. Разрез здания санатория с монолитным железобе­тонным каркасом

Монолитные каркасы проектируют рамными или рамно-связевыми (с устройством монолитных диафрагм жесткости).

В зависимости от решения ригелей (балок) монолит­ные каркасно-ригельные системы могут быть двух типов: с главными и второстепенными балками в разных направ­лениях; с балками одинакового значения в двух или трех направлениях (с перекрытиями кессонного типа).

В первом типе каркаса второстепенные балки опира­ются на монолитно связанные с ними главные балки, а те, в свою очередь, - на колонны (см. рис. 12.73). Компонов­ка второстепенных и главных балок в плане может быть различной (при продольном или поперечном их располо­жении). При выборе направления главных балок учитыва­ют назначение здания, пространственную жесткость кар­каса и др. требования.

Пролеты главных балок 6-9 (12) м, высота поперечного сечения 1/8-1/15 от пролета, а ширина - 0,4-0,5 высоты.

В каждом пролете главной балки располагают от од­ной до трех второстепенных балок. По осям колонн также располагают второстепенные балки. Их пролеты - 5-7 м, высота поперечного сечения - 1/12-1/20 от пролета, ши­рина - 0,4-0,5 от высоты.

Пролеты монолитной плиты перекрытия равны шагу второстепенных балок и составляют 2-3 м, а толщина пли­ты, в зависимости от нагрузки, выбирается в пределах 1/25-1/40 пролета и чаще всего составляет 80-100 мм.

Каркасы с частым расположением балок (1-2 м) в двух или трех направлениях с одинаковым шагом и высотой называют каркасами с кессонными перекрытиями (см. рис. 12.74). Их преимущества заключаются в сравнитель­но меньшей высоте перекрытия (балок) и высокой архитек­турной выразительности потолков общественных зданий.

К числу перспективных можно отнести суперкаркас­ную систему этажерочного типа (рис. 12.76), при кото­рой пространственная жесткость здания обеспечивается так называемым суперкаркасом, представляющим собой несколько коробчатых пилонов (стволов), соединенных между собой мощными ростверками в нескольких уров­нях по высоте здания. На ростверки (как на полки этажер­ки) опираются многоэтажные каркасы, которые могут иметь различные планировочные и конструктивные реше­ния. Каркасы этажерочного типа являются наиболее пер­спективными для зданий очень большой этажности (вы­сотных).

Рис. 12.76. Конструктивная схема каркаса этажерочного типа: а - схема фасада; б - схема типового этажа; в - схема роствер­ка; 1 - коробчатый пилон; 2 - ростверк; 3 - каркасно-ригельная структура

В последние десятилетия в технически развитых странах наблюдается повышенный интерес к сборно-монолитным конструкциям каркасов , в которых роль оставляемой опалубки выполняют тонкостенные железо­бетонные элементы. Применение таких конструкций, от­личающихся повышенной степенью индустриальности, позволяет существенно снизить трудоемкость и умень­шить сроки возведения зданий при сохранении всех ос­новных достоинств монолитных конструкций.

В сборно-монолитном варианте основные элементы каркаса - колонны и балки - бетонируются в тонкостен­ных опалубочных элементах коробчатого сечения. В зоне стыков выпуски арматуры из опалубочных элементов за- моноличиваются в процессе заполнения полостей колонн и балок бетонной смесью.

Элементы выполняются из обычного или преднапряженного бетона при толщине стенок 80-120 мм. При при­менении опалубочных элементов из обычного бетона мо­нолитное заполнение дополнительно армируется.

Похожие статьи