Как найти площадь сферы вписанной в конус. Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При

Определение. Сфера называется вписанной в цилиндр , конус , усеченный конус , если каждая образующая цилиндра, конуса, усеченного конуса является касательной к сфере, а каждая плоскость основания цилиндра, конуса, усеченного конуса касается сферы в точке, лежащей внутри основания.

В этом случае говорят, что цилиндр, конус, усеченный конус описаны около сферы.

Теорема 1. Существует сфера, вписанная в конус.

Нам нужно доказать, что в конус можно вписать сферу. Так как нам известно, что конус симметричен относительно любого сечения, проходящего через его высоту, то мы, если докажем, что в любое такое сечение можно вписать окружность (центр у всех окружностей один и тот же), то докажем, что в конус можно вписать сферу.

Рассмотрим сечение конуса, проходящее через высоту конуса.

Сечением конуса будет равнобедренный треугольник с основанием ВС. Высота ОА будет являться также и биссектрисой. Следовательно центр вписанной окружности О 1 будет находиться на ОА (вписать окружность можно, как известно, в любой треугольник). А так как все остальные рассматриваемые сечения будут равны АВС, то следовательно, и центры вписанных окружностей будут совпадать. Значит в конус можно вписать сферу с центром О 1 и радиусом ОО 1 .

Теорема 2. В цилиндр можно вписать сферу тогда и только тогда, когда его высота равна диаметру оснований.

Здесь рассматриваются сечения, которые будут являться прямоугольниками. Окружность можно вписать только в квадрат, отсюда и вытекает условие, что высота равна диаметру основания.

Теорема 3. В усеченный конус можно вписать сферу тогда и только тогда, когда его образующая равна сумме радиусов оснований.

Ключевые задачи.

Задача 1. Имеются два одинаковых шара с радиусом R, которые касаются друг друга внешним образом и плоскости. Найти расстояние между точками касания шаров и плоскости.

Рассмотрим сечение, перпендикулярное плоскости, на которой лежат шары. Так как эти шары касаются друг друга, то существует плоскость, которой они касаются в точке К. Эта плоскость будет перпендикулярна первой плоскости. Следовательно, углы АО 1 К и КО 2 В прямые, и значит АВО 2 О 1 – прямоугольник. Следовательно, АВ=2R.



Задача 2. На плоскости лежат два шара с радиусами R 1 и R 2 , которые касаются внешним образом. Найти расстояние между точками касания шаров и плоскости.

Рассмотрим сечение, перпендикулярное плоскости, на которой лежат шары. Точки А и В – точки касания шаров и плоскости. Опустим перпендикуляр О 2 К на АО 1 . КО 1 = АО 1 -КА. Если учесть, что КА=О 2 В=R 2 , а О 1 О 2 =R 1+ R 2 то по теореме Пифагора . А так как КАВО 2 – прямоугольник, то КА=АВ, Следовательно

Рассмотрим некоторые соотношения, которые полезны при решении задач на шар, вписанный в конус.

В любой конус можно вписать шар. Вписанный в конус шар (или сфера, вписанная в конус) касается основания конуса в его центре, а боковой поверхности — по окружности. Центр шара (сферы) лежит на оси конуса.

При решении задач на шар, вписанный в конус, удобнее всего рассмотреть сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара.

Это сечение представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).

Для данного рисунка образующие SA=SB=l, высота конуса SO=H, радиус вписанного шара OO1=O1F=R. Так как центр вписанного круга — точка пересечения биссектрис треугольника, то ∠OBO1=∠FBO1, OB=r — радиус конуса.

Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника:

По теореме Пифагора

Рассмотрим прямоугольный треугольник OO1B.

Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При этом цилиндр называется описанным около сферы. В цилиндр можно вписать сферу, если высота цилиндра равна диаметру его основания. Ее центром будет точка O, являющаяся серединой отрезка, соединяющего центры оснований O 1 и O 2 цилиндра. Радиус сферы R будет равен радиусу окружности основания цилиндра.




























Сфера, описанная около цилиндра Цилиндр называется вписанным в сферу, если окружности оснований цилиндра лежат на сфере. При этом сфера называется описанной около цилиндра. Около любого цилиндра можно описать сферу. Ее центром будет точка O, являющаяся серединой отрезка, соединяющего центры оснований O 1 и O 2 цилиндра. Радиус сферы R вычисляется по формуле где h – высота цилиндра, r – радиус окружности основания.












Цилиндр, вписанный в призму Цилиндр называется вписанным в призму, если его основания вписаны в основания цилиндра. При этом, призма называется описанной около цилиндра В призму можно вписать цилиндр тогда и только тогда, когда в ее основание можно вписать окружность. Радиус основания цилиндра равен радиусу окружности, вписанной в основание призмы. Высота цилиндра равна высоте призмы.












Цилиндр, описанный около призмы Цилиндр называется описанным около призмы, если его основания описаны около оснований цилиндра. При этом, призма называется вписанной в цилиндр Около призмы можно описать цилиндр, если около ее оснований можно описать окружности. Высота цилиндра равна высоте призмы. радиусу окружности, описанной около основания призмы. Радиус основания цилиндра равен











Сфера, вписанная в конус Сфера называется вписанной в конус, если она касается его основания и боковой поверхности (касается каждой образующей). При этом конус называется описанным около сферы. В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса. Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле r  S p , где S – площадь, p – полупериметр треугольника.

Упражнение 3 Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус вписанной сферы. Решение. Высота SH конуса 2 равна 1. Образующая.  1 Полупериметр p равен 2. По формуле r = S/p, имеем  2 1.  2 1.  r  1  1 2 r  Ответ:

Упражнение 4 Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы. Решение. Радиус основания конуса равен 6. Площадь треугольника SFG равна 48, полупериметр 16. По формуле r = S/p имеем r = 3. Ответ: r = 3.

Сфера, описанная около конуса Сфера называется описанной около конуса, если вершина и окружность основания конуса лежат на сфере. При этом конус называется вписанным в сферу. Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса. Напомним, что радиус R окружности, описанной около треугольника, abc находится по формуле S 4 , где S – площадь, a, b, c – стороны треугольника. R 

Упражнение 1 Около конуса, радиус основания которого равен 1, а образующая равна 2, описана сфера. Найдите ее радиус. Решение. Треугольник SAB равносторонний со стороной 2. Высота SH равна Площадь S равна По формуле R = abc/4S 3. получаем 3. R  2 3 3 .

Упражнение 2 Около конуса, радиус основания которого равен 4, описана сфера радиуса 5. Найдите высоту h конуса. Решение. Имеем, OB = 5, HB = 4. Следовательно, OH = 3. Учитывая, что SO = OB = 5, получаем h = 8. Ответ: h = 8.

Многогранники, вписанные в сферу Теорема. Около призмы можно описать сферу тогда и только тогда, когда около основания этой призмы можно описать окружность. Ее центром будет серединой отрезка, соединяющего центры окружностей, описанных около оснований призмы. Радиус сферы R вычисляется по формуле точка O, являющаяся где h – высота призмы, r – радиус окружности, описанной около основания призмы. R   r 2 , 2 h   2   

Упражнение 1 Найдите радиус сферы, описанной около единичного куба. Ответ: R  3 2 .

Упражнение 2 Найдите ребро куба, вписанного в единичную сферу. Ответ: a  2 3 3 .

Решение задач на конус, вписанный в шар (конус, вписанный в сферу) сводится к рассмотрению одного или нескольких треугольников.

Конус вписан в шар, если его вершина и окружность основания лежат на поверхности шара, то есть на сфере. Центр шара лежит на оси конуса.

При решении задач на конус, вписанный в шар, удобно рассматривать сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара. Сечение представляет собой большой круг шара (то есть круг, радиус которого равен радиусу шара) с вписанным в него равнобедренным треугольником — осевым сечением конуса. Боковые стороны этого треугольника — образующие конуса, основание — диаметр конуса.

Если угол между образующими острый, центр описанного круга лежит внутри треугольника (соответственно, центр описанного около конуса шара — внутри конуса).

Если угол между образующими прямой, центр круга лежит на середине основания треугольника (центр шара совпадает с центром основания конуса).

Если угол между образующими тупой, центр круга лежит вне треугольника (центр описанного шара — вне конуса).

Если в условии задачи не сказано, где именно лежит центр описанного шара, желательно рассмотреть, как могут повлиять на решение различные варианты его расположения.

Рассмотрим конуса и описанного около него шара плоскостью, проходящей через ось конуса и центр шара. Здесь SO=H — высота конуса, SB=l — образующая конуса,SO1=O1B=R — радиус шара, OB=r — радиус основания конуса, ∠OSB=α — угол между высотой и образующей конуса.

Треугольник SO1B — равнобедренный с основанием SB (так как SO1=O1B=R). Значит, у него углы при основании равны: ∠OSB=∠O1BS=α, и O1F — медиана, высота и биссектриса. Отсюда SF=l/2.

При решении задач на конус, вписанный в шар, можно рассмотреть прямоугольные треугольники SFO1 и SOB. Они подобны (по острому углу S). Из подобия треугольников

В прямоугольном треугольнике SOB ∠OBS=90º — ∠OSB=90º-α. По теореме Пифагора

В прямоугольном треугольнике O1OB ∠OBO1=90º — ∠O1BS=90º — α — α=90º — 2α.

Похожие статьи