Напряжение холостого хода сварочного трансформатора. Виды и устройство сварочных трансформаторов. Внешняя характеристика источников питания сварочной дуги

Для дуговой сварки используют как переменный, так и постоянный сварочный ток. В качестве источника переменного сварочного тока применяют сварочные трансформаторы, а постоянного – сварочные выпрямители и сварочные преобразователи.

Сварочный трансформатор служит для понижения напряжения сети с 220 или 380 В до безопасного, но достаточного для легкого зажигания и устойчивого горения электрической дуги (не более 80 В), а также для регулировки силы сварочного тока.

Трансформатор (рис.10). имеет стальной сердечник (магнитопровод) и две изолированные обмотки. Обмотка, подключенная к сети, называется первичной, а обмотка, подключенная к электрододержателю и свариваемому изделию, – вторичной. Для надежного зажигания дуги вторичное напряжение сварочных трансформаторов должно быть не менее 60–65 В; напряжение при ручной сварке обычно не превышает 20 – 30 В.


Рис.10 Сварочный трансформатор

В нижней части сердечника находится первичная обмотка, состоящая из двух катушек, расположенных на двух стержнях. Катушки первичной обмотки закреплены неподвижно. Вторичная обмотка, также состоящая из двух катушек, расположена на значительном расстоянии от первичной. Катушки как первичной, так и вторичной обмоток, соединены параллельно. Вторичная обмотка – подвижная и может перемещаться по сердечнику при помощи винта, с которым она связана, и рукоятки, находящейся на крышке кожуха трансформатора.

Регулирование сварочного тока производится изменением расстояния между первичной и вторичной обмотками . При вращении рукоятки по часовой стрелке вторичная обмотка приближается к первичной, магнитный поток рассеяния и индуктивное сопротивление уменьшаются, сварочный ток возрастает. При вращении рукоятки против часовой стрелки вторичная обмотка удаляется от первичной, магнитный поток рассеяния растет(индуктивное сопротивление увеличивается) и сварочный ток уменьшается. Пределы регулирования сварочного тока – 65 – 460 А. Последовательное соединение катушек первичной и вторичной обмоток позволяет получать малые сварочные токи с пределами регулирования 40 – 180 А. Диапазоны тока переключают выведенной на крышку рукояткой.

Свойства источника питания определяются его внешней характеристикой, представляющей кривую зависимости между током (I) в цепи и напряжением (U) на зажимах источника питания.

Источник питания может иметь внешнюю характеристику:

возрастающую, жесткую, падающую

Источник питания для ручной дуговой сварки имеет падающую вольт – амперную характеристику.

Напряжение холостого хода источника питания – напряжение на выходных клеммах при разомкнутой варочной цепи.

Номинальный сварочный ток и напряжение – ток и напряжение, на которые рассчитан нормально работающий источник.

Источник питания сварочной дуги-сварочный трансформатор обозначается следующим образом: ТДМ – 317

Т – трансформатор

Д – для дуговой сварки

М – механическое регулирование

31 – номинальный ток 310 А

для качественной сварки обычно требуются специальные электроды для переменного тока, обладающие повышенными стабилизирующими свойствами;

низкая стабильность горения дуги (при отсутствии встроенного стабилизатора горения дуги);

в простых трансформаторах – зависимость от колебаний сетевого напряжения.

Сварочные трансформаторы

Сварочные трансформаторы предназначены для создания устойчивой электрической дуги, поэтому они должны иметь требуемую внешнюю характеристику. Как правило, это падающая характеристика, так как сварочные трансформаторы используются для ручной дуговой сварки и сварки под флюсом.

Промышленный переменный ток на территории России имеет частоту 50 периодов в секунду (50 Гц). Сварочные трансформаторы служат для преобразования высокого напряжения электрической сети (220 или 380 В) в низкое напряжение вторичной электрической цепи до требуемого для сварки уровня, определяемого условиями для возбуждения и стабильного горения сварочной дуги. Вторичное напряжение сварочного трансформатора при холостом ходе (без нагрузки в сварочной цепи) составляет 60-75 В. При сварке на малых токах (60-100 А) для устойчивого горения дуги желательно иметь напряжение холостого хода 70 - 80 В.

Трансформаторы с нормальным магнитным рассеянием. На рис. 1 приводится принципиальная схема трансформатора с отдельным дросселем. Комплект источников питания состоит из понижающего трансформатора и дросселя (регулятора реактивной катушки).

Рис. 1. Принципиальная схема трансформатора с отдельным дросселем (сварочный ток регулируется изменением воздушного зазора)



Понижающий трансформатор, основой которого является магнитопровод 3 (сердечник), изготовлен из большого количества тонких пластин (толщиной 0,5 мм) трансформаторной стали, стянутых между собой шпильками. На магнитопроводе 3 имеются первичная 1 и вторичная 2 (понижающая) обмотки из медного или алюминиевого провода.

Дроссель состоит из магнитопровода 4, набранного из листов трансформаторной стали, на котором расположены витки медного или алюминиевого провода 5, рассчитанного на

прохождение сварочного тока максимальной величины. На магнитопроводе 4 имеется подвижная часть б, которую можно перемещать с помощью винта, вращаемого рукояткой 7.

Первичная обмотка 1 трансформатора подключается в сеть переменного тока напряжением 220 или 380 В. Переменный ток высокого напряжения, проходя по обмотке 1, создаст действующее вдоль магнитопровода переменное магнитное поле, под действием которого во вторичной обмотке 2 индуктируется переменный ток низкого напряжения. Обмотку дросселя 5 включают в сварочную цепь последовательно со вторичной обмоткой трансформатора.

Величину сварочного тока регулируют путем изменения воздушного зазора а между подвижной и неподвижной частями магнитопровода 4 (рис. 1). При увеличении воздушного зазора а магнитное сопротивление магнитопровода увеличивается, магнитный поток соответственно уменьшается, а следовательно, уменьшается индуктивное сопротивление катушки и увеличивается сварочный ток. При полном отсутствии воздушного зазора а дроссель можно рассматривать как катушку на железном сердечнике; в этом случае величина тока будет минимальной. Следовательно, для получения большей величины тока воздушный зазор нужно увеличить (рукоятку на дросселе вращать по часовой стрелке), а для получения меньшей величины тока - зазор уменьшить (рукоятку вращать против часовой стрелки). Регулирование сварочного тока рассмотренным способом позволяет настраивать режим сварки плавно и с достаточной точностью.

Современные сварочные трансформаторы типа ТД, ТС, ТСК, СТШ и другие выпускаются в однокорпусном исполнении.

Рис. 2. Принципиальная электрическая и конструктивная схема трансформатора типа СТН в однокорпусном исполнении (а) и его магнитная схема (б). 1 - первичная обмотка; 2 - вторичная обмотка; 3 - реактивная обмотка; 4 - подвижной пакет магнитопровода; 5 - винтовой механизм с рукояткой; 6 - магнитопровод регулятора; 7 - магнитопровод трансформатора; 8 - электродержатель; 9 - свариваемое изделие

В 1924 г. академиком В. П. Никитиным была предложена система сварочных трансформаторов типа СТН, состоящих из трансформатора и встроенного дросселя. Принципиальная электрическая и конструктивная схема трансформаторов типа СТН в однокорпусном исполнении, а также магнитная система показаны на рис. 2. Сердечник такого трансформатора, изготовленный из тонколистовой трансформаторной стали, состоит из двух, связанных общим ярмом сердечников,- основного и вспомогательного. Обмотки трансформатора изготовлены в виде двух катушек, каждая из которых состоит из двух слоев первичной обмотки 1, выполненных из изолированного провода, и двух наружных слоев вторичной обмотки 2, выполненных из неизолированной шинной меди. Катушки дросселя пропитаны теплостойким лаком и имеют асбестовые прокладки.

Обмотки трансформаторов типа СТН изготовляют из медного или алюминиевого проводов с выводами, армированными медью. Величину сварочного тока регулируют с помощью подвижного пакета магнитопровода 4, путем изменения воздушного зазора а винтовым механизмом с рукояткой 5. Увеличение воздушного зазора при вращении рукоятки 5 по часовой стрелке вызывает, как и в трансформаторах типа СТЭ с отдельным дросселем, уменьшение магнитного потока в магнитопроводе 6 и увеличение сварочного тока. При уменьшении воздушного зазора повышается индуктивное сопротивление реактивной обмотки дросселя, а величина сварочного тока уменьшается.

ВНИИЭСО разработаны трансформаторы этой системы СТН-500-П и СТН-700-И с алюминиевыми обмотками. Кроме того, на базе этих трансформаторов разработаны трансформаторы ТСОК-500 и ТСОК-700 со встроенными конденсаторами, подключенными к первичной обмотке трансформатора. Конденсаторы компенсируют реактивную мощность и обеспечивают повышение коэффициента мощности сварочного трансформатора до 0,87.

Однокорпусные трансформаторы СТН более компактны, масса их меньше, чем у трансформаторов типа СТЭ с отдельным дросселем, а мощность одинакова.

Трансформаторы с подвижными обмотками с увеличенным магнитным рассеянием. Трансформаторы с подвижными обмотками (к ним относятся сварочные трансформаторы типа ТС, ТСК и ТД) получили в настоящее время широкое применение при ручной дуговой сварке. Они имеют повышенную индуктивность рассеяния и выполняются однофазными, стержневого типа, в однокорпусном исполнении.

Катушки первичной обмотки такого трансформатора неподвижные и закреплены у нижнего ярма, катушки вторичной обмотки подвижные. Величину сварочного тока регулируют изменением расстояния между первичной и вторичной обмотками. Наибольшая величина сварочного тока достигается при сближении катушек, наименьшая - при удалении. С ходовым винтом 5 связан указатель примерной величины сварочного тока. Точность показаний шкалы составляет 7,5 % от значения максимального тока. Отклонения величины тока зависят от подводимого напряжения и длины сварочной дуги. Для более точного замера сварочного тока должен применяться амперметр.

Рис. 3. Сварочные трансформаторы: а - конструктивная схема трансформатора ТСК-500; б - электрическая схема трансформатора ТСК-500: 1 - сетевые зажимы для проводов; 2 - сердечник (магнитопровод); 3 - рукоятка регулирования тока; 4 - зажимы для подсоединения сварочных проводов; 5 - ходовой винт; 6 - катушка вторичной обмотки; 7 - катушка первичной обмотки; 8 - компенсирующий конденсатор; в - параллельное; г - последовательное соединение обмоток трансформатора ТД-500; ОП - первичная обмотка; ОВ - вторичная обмотка; ПД - переключатель диапазона токов; С - защитный фильтр от радиопомех.

Рис.4 Портативный сварочный аппарат

На рис. 3-а,б показаны принципиальная электрическая и конструктивная схемы трансформатора ТСК-500. При повороте рукоятки 3 трансформатора по часовой стрелке катушки обмоток 6 и 7 сближаются, вследствие чего магнитное рассеяние и вызываемое им индуктивное сопротивление обмоток уменьшаются, а величина сварочного тока увеличивается. При повороте рукоятки против часовой стрелки катушки вторичной обмотки удаляются от катушек первичной обмотки, магнитное рассеяние увеличивается и величина сварочного тока уменьшается.

Трансформаторы снабжены емкостными фильтрами, предназначенными для снижения помех радиоприему, создаваемых при сварке. Трансформаторы типа ТСК отличаются от ТС наличием компенсирующих конденсаторов 8, обеспечивающих повышение коэффициента мощности (соs φ). На рис. 3, в показана принципиальная электрическая схема трансформатора ТД-500.

ТД-500 представляет собой понижающий трансформатор с повышенной индуктивностью рассеяния. Сварочный ток регулируют изменением расстояния между первичной и вторичной обмотками. Обмотки имеют по две катушки, расположенные попарно на общих стержнях магнитопровода. Трансформатор работает на двух диапазонах: попарное параллельное соединение катушек обмоток дает диапазон больших токов, а последовательное - диапазон малых токов.

Последовательное соединение обмоток за счет отключения части витков первичной обмотки позволяет повысить напряжение холостого хода, что благоприятно отражается на горении дуги при сварке на малых токах.

При сближении обмоток уменьшается индуктивность рассеяния, что приводит к увеличению сварочного тока; при. увеличении расстояния между обмотками увеличивается индуктивность рассеяния, а ток соответственно уменьшается. Трансформатор ТД-500 имеет однокорпусное исполнение с естественной вентиляцией, дает падающие внешние характеристики и изготавливается только на одно напряжение сети - 220 или 380 В.

Трансформатор ТД-500 ~ однофазный стержневого типа состоит из следующих основных узлов: магнитопровода - сердечника, обмоток (первичной и вторичной), регулятора тока, переключателя диапазонов токов, токоуказательного механизма и кожуха.

Алюминиевые обмотки имеют по две катушки, расположенные попарно на общих стержнях магнитопровода. Катушки первичной обмотки неподвижно закреплены у нижнего ярма, а вторичной обмотки - подвижные. Переключение диапазонов тока производят переключателем барабанного типа, рукоятка которого выведена на крышку трансформатора. Величину отсчета тока производят по шкале, отградуированной соответственно на два диапазона токов при номинальном напряжении питающей сети.

Емкостной фильтр, состоящий из двух конденсаторов, служит для снижения помех радиоприемным устройствам.

Правила техники безопасности при эксплуатации сварочных трансформаторов. В процессе работы электросварщик постоянно обращается с электрическим током, поэтому все токоведущие части сварочной цепи должны быть надежно изолированы. Ток величиной 0,1 А и выше опасен для жизни и может привести к трагическому исходу. Опасность поражения электрическим током зависит от многих факторов и в первую очередь от сопротивления цепи, состояния организма человека, влажности и температуры окружающей атмосферы, напряжения между точками соприкосновения и от материала пола, на котором стоит человек.

Сварщик должен помнить, что первичная обмотка трансформатора соединена с силовой сетью высокого напряжения, поэтому в случае пробоя изоляции это напряжение может быть и во вторичной цепи трансформатора, т. е. на электрододержателе.

Напряжение считается безопасным: в сухих помещениях до 36 В и в сырых до 12 В.

При сварке в закрытых сосудах, где повышается опасность поражения электрическим током, необходимо применять ограничители холостого хода трансформатора, специальную обувь, резиновые подстилки; сварка в таких случаях ведется под непрерывным контролем специального дежурного. Для снижения напряжения холостого хода существуют различные специальные устройства - ограничители холостого хода.

Сварочные трансформаторы промышленного использования, как правило, подключают к трехфазной сети 380 В, что в бытовых условиях не всегда удобно. Как правило, подключение индивидуального участка к трехфазной сети хлопотно и дорого, и без особой нужды это не делают. Для таких потребителей промышленность выпускает сварочные трансформаторы, рассчитанные на работу от однофазной сети с напряжением 220 - 240 В. Пример такого портативного сварочного аппарата приведен на рис.4. Этот аппарат, обеспечивающий разогрев дуги до 4000°С, уменьшает обычное сетевое напряжение, одновременно повышая сварочный ток. Ток в установленном диапазоне регулируется с помощью ручки, смонтированной на передней панели аппарата. В комплект аппарата входит сетевой кабель и два сварочных провода, один из которых соединен с электрододержателем, а второй - с заземляющим зажимом.

Обычно для домашних работ вполне подходят аппараты, вырабатывающие сварочный ток в 140 ампер при 20-процентном рабочем цикле. При выборе аппарата следует обращать внимание на то, чтобы регулировка сварочного тока была плавной.

Сварочные выпрямители.

3.1. Назначение, устройство и классификация выпрямителей.

Выпрямители для ручной дуговой сварки должны иметь крутопадающие внешние характеристики. По сварочным свойствам требования к выпрямителям и трансформаторам для ручной сварки аналогичны. Выпрямители применяют тогда, когда по условиям сварки необходим постоянный (выпрямленный) ток. Они предназначены для эксплуатации в помещениях (3 и 4 категории размещения согласно ГОСТ 15150-69).

Для механизированной сварки в среде углекислого газа открытой дугой при постоянной скорости подачи проволоки применяют выпрямители с пологопадающей внешней характеристикой. Сварка в углекислом газе при малых токах и напряжениях протекает с частыми короткими замыканиями (до 10-100 в сек.). В этих условиях пологопадающая характеристика обеспечивает надежное зажигание дуги, повышает ее саморегулирование и стабильность процесса сварки на стадиях зажигания, горения дуги и короткого замыкания. Для уменьшения разбрызгивания расплавленного металла используют дроссель, включенный в цепь выпрямленного тока. Дроссель замедляет нарастание тока в первичной фазе короткого замыкания, что позволяет капле расплавленного металла на торце электродной проволоки слиться с ванной расплавленного металла на изделии с образованием жидкой перемычки. При правильном подборе индуктивности дросселя разбрызгивание металла при механизированной сварке в СО2 значительно снижается.

Иногда выпрямители входят в состав сварочных полуавтоматов. Малогабаритные сварочные полуавтоматы имеют однокорпусное исполнение с выпрямителями. Обычно такой выпрямитель состоит из однофазного трансформатора, однофазной мостовой или двухполупериодной схемы выпрямления и дросселя в цепи выпрямленного тока.

Универсальные выпрямители имеют как крутопадающие, так и пологопадающие внешние характеристики, переключаемые при настройке режима сварки. Они могут быть использованы как для ручной, так и для механизированной сварки. Выпрямители могут быть также универсальными по роду тока, т.е. обеспечивать сварку и постоянным и переменным током.

Силовые трансформаторы выпрямителей могут быть трехфазными или однофазными. Трансформатор применяют для понижения сетевого напряжения до рабочего, для формирования внешней характеристики, для ступенчатого и плавного регулирования напряжения и тока дуги.

Применяют однофазные мостовые, двуполупериодные со средней точкой, трехфазные и шестифазные схемы выпрямления.

Выпрямительный тиристорный блок кроме выпрямления тока, применяют для формирования внешней характеристики и регулирования сварочного тока. Дроссель служит для сглаживания пульсаций выпрямленного тока и для создания необходимых динамический свойств.

Сварочные выпрямители делятся по назначению:

1) Для ручной сварки;

2) Для сварки в защитных газах;

3) Универсальные;

4) Многопостовые.

В сварочных выпрямителях используют неуправляемые(диоды), полууправляемые (тиристоры) и управляемые (транзисторы) вентили. Силовые кремниевые вентили могут быть штыревого и таблеточного исполнения. У штыревых вентилей один силовой вывод (анод или катод) выполнен в виде шпильки с резьбой для присоединения к охладителю. Второй вывод

может быть гибким или жестким. У таблеточных вентилей плоские поверхности являются катодным и анодным выводами и присоединяются к охладителю. Диод пропускает ток в прямом направлении в одном полупериоде и почти не пропускает ток в обратном направлении в другом полупериоде (рис. 3.1.а). По дуге Rн идет ток одного направления – прерывистый выпрямленный ток дуги. Тиристор тоже пропускает ток в одном направлении. Однако для отпирания тиристора нужны два условия: потенциал его анода должен быть выше потенциала катода, т.е. тиристор должен быть включен в прямом направлении, и на его управляющий электрод УЭ необходимо подать положительный относительно катода импульс напряжения. Поэтому в положительном полупериоде тиристор отопрется с задержкой на электрический градус, определяемый временем подачи импульса управления на УЭ. Среднее значение выпрямленного тока, пропорциональное заштрихованной зоне, у тиристора меньше, чем у диода. Величиной выпрямленного тока можно управлять, меняя угол отпирания тиристора. Чем больше угол отпирания, тем меньше ток дуги.

Тиристор выключается самопроизвольно в конце полупериода при снижении напряжения до нуля. Поэтому тиристор называют полууправляемым вентилем. В течение отрицательного полупериода тиристор заперт. Тиристоры используются для выпрямления и регулирования тока и формирования внешних характеристик источника (рис.3.1.б).

Рис. 3.1. Осциллограммы работы диода (а), тиристора (б) в цепи переменного тока.

Прямой ток коллектора К транзистора прямо пропорционален току базы Б. В положительном полупериоде, пока на базу Б не подан ток, практически отсутствует ток коллектора и, следовательно, ток в дуге. При подаче на базу достаточно большого тока управления транзистор в момент 1 сразу начинает пропускать прямой ток коллектора, ограниченный только сопротивлением нагрузки Rн. При снятии тока базы в момент 2, резко снижается прямой ток. Транзистор тоже пропускает ток в одном направлении.

Рассмотрим работу схем выпрямления, применяемых в малогабаритных сварочных выпрямителях.

Однофазная мостовая схема (рис.3.2.а) работает следующим образом. В первом полупериоде ток пропускает VD1и VD2, во втором - вентили VD3 VD4. Таким образом, вентили работают попарно пропуская через дугу обе полуволны переменного тока. Выпрямленное напряжение представляет собой однополярные полуволны переменного напряжения трансформатора Т. В результате ток дуги остается постоянным по направлению. Форма кривой выпрямленного напряжения – пульсирующая от нуля до амплитудного значения – не совсем пригодна для сварки. Поэтому в цепь выпрямленного тока устанавливается дроссель, который сглаживает кривую выпрямленного напряжения, делает ее более пригодной для сварки.

Однофазная двухполупериодная схема со средней точкой представлена на рис. 3.2.б. Схема двухфазная, т.к. вторичная обмотка силового трансформатора обеспечивает переменные напряжения, смещенные относительно друг друга на 180°.

Рис. 3.2. Работа однофазной мостовой (а) и однофазной двухполупериодной со средней точкой (б) схем выпрямления.

В интервале времени 0-П верхний конец вторичной обмотки положителен по отношению к средней точке. Анод вентиля VD1 положителен по отношению к катоду и, следовательно, пропускает ток. Вентиль VD2 в интервале 0-П, напротив выключен. В следующем интервале работы схемы П-2П полярность напряжения на обмотках трансформатора сменится и вентили поменяются ролями. Переход тока с вентиля VD1 на вентиль VD2 произойдет в момент 0=П, когда напряжение на вторичной обмотке трансформатора сменит знак.

Кривая выпрямленного напряжения состоит из однополярных полуволн фазного напряжения вторичной обмотки трансформатора. Кривая выпрямленного тока в точности повторяет кривую выпрямленного напряжения.

С точки зрения использования трансформатора однофазная мостовая схема более выгодна, чем однофазная двухполупериодная схема со средней точкой. Использование вентилей по напряжению в мостовой схеме лучше, но мостовая схема требует в 2 раза большего числа вентилей. Поэтому для выпрямителей для сварки в СО2, где обратное напряжение на вентиле мало, выгоднее использовать однофазную двухполупериодную схему.

Однофазные схемы выпрямления имеют недостатки: неэффективное использование трансформатора, большие пульсации выпрямленного напряжения и тока, прерывистый ток. Этих недостатков не имеет трехфазная схема выпрямления. Выпрямитель состоит из трехфазного трансформатора и шести вентилей, соединенных по мостовой схеме. Вентили V1, V3, V5 образовывают катодную группу, их общий вывод – положительный полюс для внешней цепи. Вентили V2, V4, V6 образовывают анодную группу, общая точка соединения анодов – отрицательный полюс для сварочной цепи. В катодной группе в течении каждой трети периода работает вентиль с наиболее высоким потенциалом анода. В анодной группе в данную часть периода работает тот вентиль, катод которого имеет наиболее отрицательный потенциал по

отношению к общей точке анодов. Вентили катодной группы открываются в момент пересечения положительных отрезков синусоид, а вентили анодной группы – в момент пересечения отрицательных отрезков синусоид. Каждый из вентилей работает на протяжении трети периода. Ток в каждый момент времени проводят два вентиля – один в катодной, другой в анодной группе. Ток в нагрузке все время проходит в одном направлении. Выпрямленная дуга UД и ток IД отличаются малыми импульсами. Такой выпрямитель обеспечивает равномерное нагружение фаз питания, эффективное использование трансформатора и вентилей. Трехфазная мостовая схема широко используется в сварочных выпрямителях.

Трехфазная мостовая схема получила применение в выпрямителях на номинальные токи до 300-400 А. Шестифазная схема с уравнительным реактором применяется в тиристорных выпрямителях на токи 500-600 А. Шестифазная кольцевая схема выпрямителя – в выпрямителях на токи 1250-1500 А.

По конструкции выпрямители отличаются способом регулирования режима. Уравнение внешней характеристики выпрямителя с пологопадающей внешней характеристикой имеет вид (при UД > 0,7 UXX):

Уравнение крутопадающей внешней характеристики (при UД < 0,7 UXX):

где ХТ – индуктивное сопротивление фазы трансформатора ХТ = Х1 + Х2

Сварочные выпрямители

Сварочный выпрямитель – это аппарат, преобразующий переменный ток сети в постоянный ток для сварки.

Рисунок. Устройство сварочного выпрямителя (с трансформатором с подвижными обмотками)

Сварочный выпрямитель для дуговой сварки, как правило, состоит из силового трансформатора, выпрямительного блока, пускорегулирующей, измерительной и защитной аппаратуры.

Рисунок. Типовая функциональная блок-схема выпрямителя для сварки плавящимся электродом

Силовой трансформатор преобразует энергию силовой сети в энергию, необходимую для сварки, а также согласует значения напряжений сети с выходным напряжением. В однопостовых выпрямителях используют преимущественно трехфазные трансформаторы, поскольку однофазные одно- и двухполупериодные схемы выпрямления приводят к существенным пульсациям выходного напряжения, которые ухудшают качество сварных соединений.

Регуляторы тока (или регуляторы напряжения) используются для формирования жесткой или падающей внешней характеристики. Они позволяют установить режим сварки и соответствующее значение сварочного тока.

Выпрямительный блок в основном собирают по трехфазной мостовой схеме, реже – по однофазной мостовой двухполупериодного выпрямления. При трехфазной мостовой схеме обеспечивается более равномерная загрузка трехфазной силовой сети и достигаются высокие технико-экономические показатели. В качестве полупроводников применяются селеновые или кремниевые вентили.

Виды сварочных выпрямителей

В зависимости от конструкции силовой части сварочные выпрямители подразделяют на следующие виды:

регулируемые трансформатором;

с дросселем насыщения;

тиристорные;

с транзисторным регулятором;

инверторные.

Сварочные выпрямители также классифицируют по типу формируемых вольт-амперных характеристик.

При механизированной сварке под флюсом или в защитном газе в сварочных аппаратах с саморегулированием дуги используют однопостовые выпрямители с жесткими внешними характеристиками. Обычно в таких выпрямителях применяется трансформатор с нормальным магнитным рассеянием. Возможные способы регулирования сварочного напряжения:

витковое регулирование – в сварочном выпрямителе с трансформатором с секционированными обмотками;

магнитное регулирование – в выпрямителе с трансформатором с магнитной коммутацией или дросселем насыщения;

фазовое регулирование – в тиристорном выпрямителе;

импульсное регулирование – широтное, частотное и амплитудное регулирование в выпрямителе с транзисторным регулятором и инверторном выпрямителе.

Наиболее известные выпрямители с жесткими (естественно пологопадающими) внешними характеристиками для механизированной дуговой сварки:

серий ВС (ВС-200, ВС-300, ВС-400, ВС-500, ВС-600, ВС-632), ВДГ (ВДГ-301, ВДГ-302, ВДГ-303, ВДГ-603) и ВСЖ (ВСЖ-303);

а также сварочные выпрямители ВС-1000 и ВС-1000-2 для механизированной сварки в аргоне, гелии, углекислом газе, под флюсом.

При ручной дуговой сварке применяют выпрямители с падающими внешними характеристиками. В конструкциях российских аппаратов используют следующие способы формирования характеристик:

повышение сопротивления трансформатора – в сварочном выпрямителе с трансформатором с подвижными обмотками, с магнитным шунтом либо с разнесенными обмотками;

применение обратной связи по току – в тиристорном, транзисторном или инверторном выпрямителях.

Наиболее распространенные выпрямители для ручной дуговой сварки: серии ВД (ВД-101, ВД-102, ВД-201, ВД-301, ВД-302, ВД-303, ВД-306, ВД-401), типов ВСС-120-4, ВСС-300-3, а также аппараты ВД-502 и ВКС-500, предназначенные для автоматической сварки под флюсом.

Весьма популярны и универсальные сварочные выпрямители, формирующие как падающие, так и жесткие характеристики. Наиболее известные типы:

серии ВСК (ВСК-150, ВСК-300, ВСК-500) для ручной дуговой сварки покрытыми электродами, полуавтоматической и автоматической сварки в защитных газах;

серий ВСУ (ВСУ-300, ВСУ-500) и ВДУ (ВДУ-504, ВДУ-305, ВДУ-1201, ВДУ-1601) для ручной сварки покрытыми электродами, механизированной сварки плавящейся электродной проволокой под флюсом, в защитных газах, порошковой проволокой.

Опасным в электросети считается напряжении свыше 36 вольт. Вторичное напряжение холостого хода сварочных трансформаторов достигает 80 вольт и при проведении электросварочных работ сварщик может получить электротравму а в сырых помещениях и с летальным исходом.

Вторичное напряжение холостого хода в процессе сварки снижается по крутопадающей нагрузочной характеристике.
Использование средств первичной защиты при производстве сварочных работ, в виде резиновых перчаток и бот создают дополнительные неудобства и не всегда защищают от поражения электротоком.

Применение сварочных аппаратов с низким напряжением вторичной цепи приведёт к неустойчивому зажиганию сварочной дуги, длительность времени зажигания не менее 20 мсек - не ниже времени соприкосновения сварочного электрода с изделием. Практически все заводские сварочные трансформаторы имеют напряжение холостого хода в пределах 80 вольт и рабочее напряжение в 36-46 вольт переменного тока при максимальном токе сварочной дуги.
Использование стационарных устройств по снижению напряжения холостого хода сварочных аппаратов в переносном варианте невозможно по ряду причин: большие габариты и вес, обязательное вторичное заземление, сбои в работе от нечёткого включения при применении релейной коммутации.

Цели устройства:
Снизить вторичное напряжение сварочного аппарата возможно простыми методами:
1. Установить в первичную цепь резистор – реостат с плавной регулировкой сопротивления. Недостаток такого устройства – большие габариты и потери электроэнергии на нагрев сопротивления, невозможность автоматически поддерживать напряжение вторичной цепи в заданных приделах.
2. Избавиться от тепловых потерь можно вторым методом - питанием первичной обмотки через разделительный конденсатор, недостаток такого включения состоит в том, что при определённых условиях создаётся резонанс напряжений и их почти двукратный рост на конденсаторе и обмотках трансформатора.
Это может привести к выходу из строя этих элементов и даже возгоранию.
3.Третий способ снижения напряжения холостого хода прост по реализации, но требует дополнительных затрат на выполнение схемы ограничения холостого хода сварочного аппарата, позволяет поддерживать вторичное напряжение на безопасном уровне сколько угодно длительное время, автоматически, почти мгновенно, зажигает дугу при любом состоянии поверхности свариваемого металла.

Характеристики устройства :
Напряжение электросети -220/380 В.
Мощность сварочного аппарата - не ограничена.
Сварочный ток - не ограничен.
Напряжение холостого хода сварочной цепи - 16-36 Вольт переменного тока.
Напряжение зажигания сварочной дуги -80 -120 вольт.
Время зажигания сварочной дуги 8-16 мсек.
Частота сети 50 Гц.
Экономия электроэнергии при ПВ 30% до 62 %.
Регулировка тока 36%.

Цели использования устройства :
1) защита персонала при производстве сварочных работах в опасных промышленных и бытовых условиях
2) снижение напряжения сварочной цепи до допустимых пределов
3) ограничение загрузки электросети токами холостого хода
4) понижение температуры сварочного трансформатора при работе
5) улучшение качества сварки за счёт возможного регулирования сварочного тока и устойчивого зажигания дуги
6) экономия электроэнергии расходуемой агрегатом на холостой ход.

Принцип работы устройства заключается в предварительном ограничении напряжения холостого хода сварочной цепи, автоматического, устойчивого, зажигания сварочной дуги, путём кратковременной подачи повышенного напряжения в сварочную цепь и поддержание сварочного тока в установленных приделах.

Схема устройства ограничения холостого хода сварочного аппарата состоит из бюджетного силового сварочного трансформатора Т 3 (Рис.1) с цепями защиты FU1 и коммутации SA1 первичной цепи и элементов вторичной цепи – диодного моста VD 7, дросселя L 1 и конденсатора фильтра C7.
В разрыв первичной цепи сварочного трансформатора включен мощный симистор VS1 с цепями защиты от помех С6, R15.

Во вторичной цепи сварочного трансформатора Т3 установлен трансформатор тока Т2 для снятия сигнала обратной связи, необходимого для запуска схемы и регулировки сварочного тока.
Для гальванического развязки схемы блока управления от опасного воздействия электросети, питание электронной схемы выполнено через силовой трансформатор Т1, а управление симистором VS1 происходит через динисторную оптопару DA2 включенную в коллекторную цепь усилителя на транзисторе VT2. Светодиодный индикатор HL1 указывает на рабочее состояние устройства.

Программируемый аналоговый таймер на микросхеме DA1 позволяет установить необходимые режимы работы устройства по времени.
Входной усилитель сигнала обратной связи на транзисторе VT1 позволяет предварительно усилить слабый сигнал до уровня достаточного для переключения таймера в рабочий режим, с отработкой функций - ограничения напряжения холостого хода, импульсного зажигания сварочной электродуги и установки рабочего тока в зависимости от сечения сварочного электрода.

При прохождении сварочного тока на обмотке (1) трансформатора тока Т2 возникает небольшое напряжение, которое после выпрямления диодным мостом VD4 сглаживается конденсатором С4 и стабилизируется на уровне трёх вольт стабилизатором VD3. C установочного резистора R7 через обратный диод VD2 напряжение обратной связи поступает на вход предварительного усилителя на транзисторе VT1. Коэффициент усиления зависит от свойств транзистора и номиналов резисторов R1,R2,R3. Начальное напряжение на коллекторе величиной в 2/3 Uп запрещает запуск таймера DA1, а при наличии входного сигнала обратной связи транзистор VT1 мгновенно переключается и напряжение на коллекторе снижается до 1/3 Uп, что создаёт условия для запуска таймера. Конденсатор С2 улучшает условия переключения и задерживает отключение на доли секунды при разрыве сварочного электрода, защищая от потери дуги.

Низкий уровень на входе 2DA1 нижнего компаратора таймера находящегося в состоянии ждущего мультивибратора разрешает его работу и на выходе (3) появляется высокий уровень.
Ждущий мультивибратор на таймере начинает генерировать на выходе импульс прямоугольного напряжения длительностью Т1=1,1 (R4+R5) C1, по окончанию этого процесса и по достижению напряжения на конденсаторе величины 2/3U срабатывает верхний компаратор по входу (6) DA1, выход микросхемы переключается в нулевое состояние, внутренний транзистор таймера откроется и разрядит конденсатор С1 со временем Т2= С1R6. При наличии сигнала обратной связи процесс генерирования прямоугольных импульсов продолжится.

Питание микросхемы и предварительного усилителя выполнено от параметрического стабилизатора на стабилитроне VD1 и ограничительном резисторе R8.
Импульсы положительной полярности через резистор R9 с выхода 3 DA1 таймера поступают на базу VT2 усилителя на транзисторе, а резисторами R7 устанавливается напряжение холостого хода вторичной обмотки сварочного трансформатора.
Транзистор VT2 с частотой определённой параметрами внешних элементов таймера DA1 через оптопару DA2 открывает симистор VS1 в обеих полярностях переменного тока сети.

Радиодетали в схеме установлены заводского исполнения: резисторы МЛТ -0,125 или С-29 -0,12, резистор R16 мощностью не менее двух ватт. Конденсаторы типа КМ и К50. Транзисторы обратной проводимости с коэффициентом усиления не менее В -100 типа КТ315 и КТ815Б соответственно со схемой. Вместо таймера DA1 можно установить аналог серии 555 или 7555.

Тип применяемого симистора зависит от сварочного трансформатора. Трансформатор тока Т2 типа ТК 20 -100 / 5.
Трансформатор питания Т1 - ТПП -112 на напряжение 8-10 вольт и ток не менее 100 мА, мощностью 8-15 ватт.
Плата устройства ограничения холостого хода сварочного трансформатора установлена в корпусе соответствующего размера, отдельно размещен трансформатор тока Т2, возможен вариант установки устройства вне корпуса сварочного аппарата.

Наладку устройства начинают с контроля напряжения на резисторе R8. Верхний вывод резистора R7 предварительно от схемы отключить. Резистором R5 при временно замкнутых выводах 2,6 DA1 установить вторичное напряжение сварочного трансформатора не ниже 16 вольт и не выше 36 вольт в зависимости от условий эксплуатации. Далее замкнув сварочную цепь электродом диаметром 3 мм установить резистором R7 момент переключения таймера DA1 по повышению яркости контрольного светодиода HL1 и по появлению полного напряжения на вторичной обмотке трансформатора Т3. Резистором R4 выполняется регулирование сварочного тока в небольших пределах. Схема устройства выполнена на плате размерами 140 * 35 мм из одностороннего фольгированного стеклотекстолита.

Литература:
1.С.Замковой. Ограничитель напряжения сварочного трансформатора. "Радио" №8,1984 г. стр.55-56.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Программируемый таймер и осциллятор

NE555

1 КР1006ВИ11 В блокнот
VT1 Биполярный транзистор

КТ3102Б

1 В блокнот
VT2 Биполярный транзистор

КТ972А

1 В блокнот
VD1 Стабилитрон

КС210Б

1 В блокнот
VD2 Стабилитрон КС512Б 1 В блокнот
VD3 Стабилитрон

КС133А

1 В блокнот
VD4-VD6 Диодный мост

КЦ407А

3 В блокнот
VD7 Диод Д160 4 В блокнот
VS1 Тиристор & Симистор

ТС132-40-12

1 В блокнот
DA2 Оптопара

АОУ103В

1 В блокнот
С1, С3 Конденсатор 0.01 мкФ 2 В блокнот
С2 1 мкФ 1 В блокнот
С4 Электролитический конденсатор 10 мкФ 1 В блокнот
С5 Электролитический конденсатор 470 мкФ 50 В 1 В блокнот
С6 Конденсатор 1 мкФ 600 В 1 В блокнот
С7 Электролитический конденсатор 10000 мкФ 100 В 1 В блокнот
С7 Конденсатор 0.1 мкФ 600 В 1 В блокнот
R1 Резистор

16 кОм

1 В блокнот
R2 Резистор

1 МОм

1 В блокнот
R3 Резистор

1.2 кОм

1 В блокнот
R4 Резистор

3.6 кОм

1 В блокнот
R5 Переменный резистор 220 кОм 1 В блокнот
R6 Резистор

120 Ом

1 В блокнот
R7 Подстроечный резистор 3.3 кОм 1 В блокнот
R8 Резистор

910 Ом

1 В блокнот
R9 Резистор

560 Ом

1 В блокнот
R10 Резистор

470 кОм

1 В блокнот
R11 Подстроечный резистор 510 кОм 1

Для выполнения электродуговой сварки необходим определенный набор оборудования, в него входит сварочный трансформатор. На рынке существуют производственные и бытовые аппараты, они различаются техническими характеристиками.

Главная задача трансформатора –преобразование подаваемого электричества до требуемых параметров.

Взаимодействие компонентов входящих в состав сварочного трансформатора, в результате, приводит генерации сварной дуги, которая располагается между рабочим инструментом и заготовкой.

Устройство сварочного трансформатора и характеристики

Для возникновения дуги, обеспечивающей разогрев и расплавление кромок заготовки, требуется изменить характеристики электричества подаваемого из сети.
Сварочный трансформатор преобразует поступающее электричество следующим образом:

  • напряжение снижает;
  • силу тока поднимает.

В преобразовании электричества принимают участие следующие узлы:

  • магнитопровод;
  • первая обмотка, собираемая из изолированного кабеля;
  • перемещающейся второй обмотки. Ее выполняют из провода без изоляции, это необходимо для повышения тепловой отдачи;
  • винтовая пара;
  • штурвал для управления винтовой парой;
  • клеммники для сварных кабелей.

В состав сварочных агрегатов включают дополнительные компоненты, которые предназначены для совершенствования их работы.

Устройство пускового механизма

Пусковое устройство включает в свой состав – магнитопровод, две обмотки и клеммы. Переключатели изменяют напряжение и общее число обмоток подключаемых к выпрямителю. В первичную цепь устанавливают регулятор, собранный на основе полупроводников (тиристоров). Вторая обмотка, подключаемая к выпрямительному мосту, обеспечивает подачу двух уровней изменяемого напряжения.

Для работы пускового устройства требуется напряжение в 220 В. Ток лежит в диапазоне от 0 до 120 А, а напряжение достигает 70 В случае самостоятельного изготовления устройства, за основу принимают стержневой трансформатор, на его первой обмотке накручено 230 витков, на второй 32. Пульт управления полупроводниками монтируют над дросселем. Для охлаждения всей системы используют принудительную вентиляцию.

Устройство магнитопровода

Ключевыми деталями магнитопровода, являются пластинки или листы, произведенные из электромагнитной стали. К конструктивным деталям относят крепеж, корпус и пр. Магнитопроводы сварочных трансформаторов разделяют на стержневые и броневые. В устройствах стержневого типа все сегменты магнитной цепи обладают одинаковым сечением. В магнитопроводах броневого типа полным сечением обладает только средний стержень, на который устанавливают обмотки.

Сечения остальных участков магнитной цепи почти в два раза меньше. По ним происходит замыкание магнитного потока. На участках магнитопровода имеющего Т-образную форму, каждый имеет свое сечение. При этом его размер составляет в три раза меньший размер, чем собственно сам стержень. По каждому из участков происходит замыкание третьей части потока.
Пластины, входящие в пакеты покрывают специальным составом, который называют оксидной изоляцией.
Принцип работы сварочного трансформатора
Аппаратура для сварки работает по алгоритму:

  1. Питание подается на первую обмотку. В ней генерируется магнитный поток, замыкающийся на сердечнике.
  2. Затем питание направляется на вторую обмотку.
  3. Магнитопровод, который собран из ферромагнитов, генерирует постоянное магнитное поле. Индуцирующий поток производит ЭДС.
  4. Разность в числе витков допускает колебание тока с требуемыми для выполнения сварки параметрами. Эти же показатели учитывают при расчетах аппаратуры для сварки.

Существует связь числа витков на второй катушке и напряжением на выходе. То есть для повышения тока количество витков необходимо увеличить. Но так как, сварочный трансформатор – это понижающий тип, то число витков на второй обмотке будет ниже, чем на первой.
Устройство и принцип действия сварочного трансформатора обеспечивает настройку величины тока. Этого достигают уменьшая или увеличивая пространство между катушками.
Для этого в сварочном оборудовании установлены движущиеся компоненты. Расстояние между обмотками изменяет сопротивление и это дает возможность выбирать именно тот ток, который нужен для сварки.

Холостой ход

Аппаратура для сварки работает в двух режимах – рабочем и холостом. Во время сварки вторая обмотка замыкается между рабочим инструментом и деталью. Ток расплавляет кромки заготовок и в результате получается надежное соединение деталей. После того, как сварщик закончит работы, цепь прерывается и трансформатор переключается на холостой ход.
ЭДС в первой обмотке появляются из-за наличия:

  • магнитного потока;
  • его рассеивания.

Эти силы отпочковываются от направления потока в магнитопроводе и замыкаются между катушками в воздухе. Именно эти силы и являются основой работы в холостую.
Работа на холостом ходу не должна представлять опасность для рабочего — сварщика и окружающих людей. То есть оно не должно быть больше чем 46 В. Но отдельные модели сварочного оборудования, имеют большие значения, например, 60 – 70 В. В этом случае в конструкции сварочного устройства устанавливают ограничитель параметров холостого хода. Скорость его срабатывания не превышает одну секунду с момента разрыва цепи и окончания работы. В целях дополнительной защиты сварщика, корпус трансформатора необходимо заземлять.

Это позволяет напряжению, которое может появиться на корпусе в результате повреждения изоляции, уйти в землю, не нанеся ни какого вреда рабочему – сварщику.

Схема сварочного трансформатора и ее модификации

Аппаратура для сварки состоит из:

  • трансформатора;
  • приборы для изменения размера тока.

Для розжига и поддержания дуги необходимо обеспечить наличие индуктивного сопротивления второй обмотки.
Подъем индуктивного сопротивления ведет к тому, что изменяется наклон статистических параметров источника энергии. В результате приводит к постоянству всей системы «источник тока – дуга».

У сварочных аппаратов, работающих под нагрузкой, количество мощности в разы больше, чем потери, которые они несут при работе в холостую.

Настройка рассеивания магнитного поля осуществляется переменой геометрических параметров пространства между составными частями магнитопровода. В виду того, что магнитная проницаемость железа выше чем у воздуха то придвижении шунта изменяется сопротивление потока, который проходит по воздуху. Если шунт введен целиком, то индуктивное сопротивление определяется, зазорами между ним и элементами магнитопровода.

Трансформаторы этого типа изготавливают для решения производственных задач.

Сварочные трансформаторы с секционными обмотками

Такая аппаратура производилось в ХХ века для решения производственных и бытовых задач. В них реализовано несколько степеней настройки количества витков в обеих катушках.

Для настройки напряжения и тока применяют фазовый сдвиг тиристора. При этом происходит изменение среднего значения напряжения.

Для работы однофазной сети нужны два тиристора, включенных навстречу друг другу. Причем их настройка должно быть синхронной и симметричной. Трансформаторы на основании полупроводников (тиристоров) обладают жесткой статической характеристикой. Ее регулировка производится по напряжению при помощи тиристоров.

Тиристоры хороши для настойки напряжения и тока в электрических цепях переменного характера, дело в том, что закрытие происходит при изменении полярности.

В схемах с постоянным током для закрытия тиристоров применяют резонансные схемы. Но это сложно, дорого и накладывает определенные сложности на возможность регулирования.

В полупроводниковых трансформаторах тиристоры монтируют в первой обмотке, тому есть две причины:

  1. Вторичные токи в сварочных источниках значительно больше, чем предельный ток тиристоров, он достигает 800 А.
  2. Высокий КПД так как потери на падении напряжения в открытых вентилях в первой обмотке в отношении рабочего ниже в несколько раз.

В современных устройствах используют обмотки из алюминия, для повышения надежности конструкции к ним на концах приварены медные накладки.

Отличия и разновидности оборудования

На производстве применяют следующие виды сварочных аппаратов:

  • трансформаторы;
  • выпрямители;
  • инверторы.

Ещё выделяют:

  • полуавтоматы;
  • генераторы — сварочные аппараты с бензиновым или дизельным электрогенератором;
  • и прочие промышленные аппараты.

Сварочные трансформаторы

Так называют устройство, которое предназначено для преобразования переменного тока получаемого из сети в напряжение необходимо для выполнения электрической сварки.

Ключевым узлом этого устройства является трансформатор, который понижает сетевое напряжение до уровня холостого хода.

Достоинства и недостатки сварочных трансформаторов

К несомненным преимуществам этого оборудования относят довольной высокий КПД от 70 до 90%, простоту работы и высокую ремонтопригодность. Кроме этого аппараты этого класса отличает невысокая стоимость.
Вместе с тем, аппараты этого типа иногда не в состоянии обеспечить постоянство горения дуги. Это обусловлено характеристиками переменного тока. Для получения качественной сварки целесообразно применять электроды, адаптированные для работы с переменным током. Кроме того, на качестве сварки отрицательно сказываются и колебания напряжения на входе.

Аппараты этого типа нельзя применять для работы с нержавейкой и цветными металлами. Высокий вес аппарата и его габариты вызывают ряд сложностей при его транспортировке с места на место.
Но надо отметить, что сварочный трансформатор – это не плохой выбор для домашних нужд.

Аппаратура, которое преобразует переменное напряжение, поступающее из сети питания в постоянное, необходимое для выполнения электросварочных работ.
На практике применяют несколько схем выпрямителей, в которых реализованы разные методы получения выходных параметров напряжения и тока. Применяют разные способы регулировки параметров тока и вольт-амперной характеристики.

В эти способы входят:
Изменение настроек трансформатора, применение дросселя, настройка с помощью полупроводников (тиристоров и транзисторов). В самых простых аппаратах для регулирования тока применяют трансформатор, а для его выпрямления диодные схемы. В силовую часть такого оборудования входят трансформатор, выпрямитель, дроссель.

Достоинства и недостатки сварочных выпрямителей

Главное достоинство выпрямителей, если сравнивать их с трансформаторами, заключено в том что, для сварки применяют постоянный ток. Это обеспечивает качество розжига и поддержания параметров дуги и это соответственно приводит к качеству сварного шва. Применение выпрямителя позволяет сваривать не только обыкновенные стали, но обрабатывать нержавейку и цветные металлы. Кроме того, надо учесть и то, что сваривание с применением выпрямителя обеспечивает малое количество брызг.

По сути, описанные достоинства дают однозначный ответ на вопрос – какой аппарат выбрать трансформатор или выпрямитель, но разумеется нельзя забывать и стоимости этого оборудования.
Выпрямители имеют и отдельные недочеты – большой вес конструкции, потеря мощности, падение напряжения в сети во время проведения сварочных работ. Кстати, все сказанное в полной мере относится и к трансформаторам.

Сварочные инверторы

Аппаратура этого типа предназначено для преобразования постоянного тока в переменный. Инвертор работает следующим образом. Ток, с частотой в 50 Гц, попадает на выпрямитель. На нем он, пройдя, через фильтр сглаживается и преобразуется в переменный. Частота такого тока оставляет несколько килогерц. Современные схемы позволяют получать ток с частотой 100 Гц. Этот этап преобразования, является самым важным в работе инвертора и это позволяет добиться существенных преимуществ в сравнении с другими моделями сварочного оборудования.

После этого, полученное высокочастотное напряжение роняют до значения холостого хода. А ток вырастает до размеров достаточных для выполнения сварочных работ, то есть до величины 100 – 200 А.
Схема инвертора и комплектующие используемые в работе позволяют создавать сварочные аппараты с малым весом и высокими техническими характеристиками.
Предприятия – производители выпускают аппараты для выполнения сварки:

  • в ручном режиме;
  • неплавящимся электродом в аргонной среде;
  • в полуавтоматическом режиме под защитой газов и многие другие.

К несомненным достоинствам этого класса оборудования можно отнести – малый вес и габариты. Это позволяет передвигать инвертор на строительной или производственной площадке без особых сложностей.
В составе инвертора нет трансформатора и это позволило избежать потерь на нагрев обмоток и перемагничивания сердечника и получить высокий КПД. При сварке электродом в диаметр 3 мм, от сети потребляется все 4 кВт мощности, показатель сварочного трансформатора или выпрямителя составляет 6 – 7 кВт.

Схемы применяемые в инверторах позволяют генерировать практически все параметры вольт-амперных характеристик – это говорит о том, что аппараты этого типа допустимы для применения во всех видах сварочных работ. Кроме того, инверторы обеспечивают работу с легированными, нержавеющими сталями и цветными металлами.

Инверторная схема не нуждается в частых и длительных перерывах в работе.

Конструкция инвертора позволяет выполнять плавную регулировку режимов сварки во всем диапазоне токов и напряжений, необходимых для выполнения сварочных работ. Инвертор обладает широким диапазоном токов от нескольких единиц до сотен тысяч. В быту применяют аппараты, которые позволяют варить металл относительно тонкими электродами до 3 мм. Применение аппаратов такого уровня позволяет формировать шов в различных положениях и обеспечить минимальное количество брызг расплавленного металла, возникающих при сварочных работах.

Инверторные сварочные аппараты, производимые в наши дни, по большей части имеют микропроцессорное управление. Оно позволяет:

  • обеспечить рост тока при розжиге дуги;
  • минимизировать залипание электрода и детали и еще ряд функций облегчающих работу сварщика.

После выполнения сварки с помощью трансформатора или выпрямителя, работа с инвертором может с полным основанием считаться праздником.
Между тем инверторы обладают рядом недостатков. В частности, ремонт инвертора может обойтись в копеечку. Кроме того, у аппаратов инверторного типа повышенные требования к условиям хранения. Это обусловлено тем что, в инверторах содержится много элементов микроэлектроники.

На что обращать внимание при выборе

Надо понимать, что выбор сварочного оборудования это непростая задача и решают ее в несколько этапов.

  1. Необходимо знать марку свариваемых материалов и вид требуемого шва. Так, для обработки стали или нержавейки достаточно аппарата обеспечивающего ручную дуговую сварку. Для сварки обыкновенной стали можно использовать аппараты с переменным и постоянным током. Для работы с нержавеющей сталью необходимо использовать аппараты постоянного тока. Рабочие характеристики сварочного трансформатора позволяют работать с разными материалами.

  1. В зависимости от размера тока, аппараты в 200 А, относят к бытовым, а в 300 к профессиональным.
  2. В зависимости от типа работы – полуавтоматы, обладающие сложной конструкцией и довольно высокой стоимостью, показывают высокую производительность и простоту в управлении.
  3. Инверторы обладают малыми габаритами и весом и широкой возможностью настроек.
  4. Немаловажное значение имеет место выполнения работ, в частности, климатические условия.
  5. Само собой, принимая решение о выборе аппарата необходимо обращать внимание на компанию – производителя.

Возможные неисправности и ремонт

Сварочная аппаратура, как и любое техническое устройство, всегда может выйти из строя. Существуют некоторые признаки, по которым можно определить возникшие неисправности.

Например, при проведении сварки, постоянно происходит залипание электрода. Это может быть вызвано низким напряжением, неправильной настройкой тока, неправильным выбором электрода и рядом других причин.
Отсутствие дуги может быть вызвано перебитым кабелем, перегревом сварочного оборудования и множеством других причин.

Для ремонта сварочного трансформатора необходимо обладать определенными знаниями, то есть необходимо умение читать принципиальные электрические схемы и навык выполнения электромонтажных работ. Именно поэтому имеет смысл при возникновении неисправностей обращаться в мастерскую по их ремонту и обслуживанию.

Как правильно смонтировать трансформатор

Сварочную аппаратуру необходимо надежно заземлить. Для облегчения жизни, на трансформаторов устанавливают специальные болтовые зажимы с сопроводительной надписью «ЗЕМЛЯ».
Классификация по различным признакам
Сварочная аппаратура классифицируется по следующим признакам – по фазам, по применяемости.
На практике применяют одно и трехфазные сварочные аппараты. Однофазные аппараты, по большей части применяют для выполнения сварочных работ переменным током. Трехфазные применяют на строительных и производственных.

К однофазным относятся аппараты марки ТД. По сути, это трансформаторы с хорошим магнитным рассеиванием и перемещающимися обмотками. Их снабжают механическими регуляторами, выполненными в виде винтовых.
Трехфазные аппараты применяют для сварки трехфазной дугой. Такой способ повышает производительность сварки, позволяет экономить электроэнергии, производит выравнивание нагрузки между фазами.

Трехфазные аппараты применяют для организации многопостовой сварки. В частности, использование такого оборудования позволяет использовать как минимум два электрода одновременно. В конструкцию аппарата вносят некритичные изменения. Такое применение аппаратуры позволяет поднять экономический эффект от сварочных работ.

Трансформатор ТДМ включает в свой состав следующие части:

  • металлический корпус;
  • клеммы для сварочных;
  • штурвал для настройки аппарата;
  • магнитопровод;
  • первая обмотка;
  • вторая обмотка;
  • винтовую пару для перемещения частей обмоток.

Принцип работы трансформатора ТДМ

Как уже отмечалось в конструкцию аппарата ТДМ входит магнитопровод, представленный в виде набор стальных пластин и изолированных обмоток. Ток, подаваемый из сети электропитания, попадает на первичную обмотку. В это время вторая обмотка, которая является перемещаемой, должна быть подключена к сварочному электроду и обрабатываемой деталью.

Между обмотками существует зазор, который и определяет параметры сварочного тока и напряжения. Чем больше размер зазора, тем больше сварочный ток. Это достигается за счет рассеивания магнитного поля.

Сварочный трансформатор своими руками

Для изготовления сварочного аппарата своими руками надо понимать его базовые принципы работ. Первым делом необходимо определиться с параметром мощности тока. Для сварки массивных заготовок будет востребована высокая мощность генерируемого тока.

Кроме того, нельзя забывать и о том, что этот параметр жестко связан с тем, какие электроды будут использоваться во время работы. Для работы с металлом от 3 до 5 мм, необходимо использовать электроды 3 – 4 мм. Если толщина металла менее 2 мм, то вполне достаточно электродов 1,5 – 3 мм.

Другими словами, если планируется использование электродов толщиной 4 мм, то сила тока должна составлять 150 – 200 А, а электроды в 2 мм, сила тока должна составлять 50 – 70 А.
Дуга формируется за счет использования трансформатора, состоящего из обмоток и магнитопровода.

Расчет сварочного трансформатора

У каждого типа сварки свои требования к трансформационным устройствам. Базовый расчет выполняют на основании разности количества витков на первичной и вторичной обмотке. Для понижающего оборудования работает следующее правило – если существует необходимость снижения напряжения в 10 раз, то количество витков на вторичной обмотке должно быть в 10 раз меньше. Надо отметить, что это правило имеет обратную силу.

У каждого трансформатора имеется так называемый коэффициент трансформации. Он показывает размер масштаба силы тока при переходе с первичной обмотки на вторичную. Руководствуясь этим принципом можно выполнить расчет сварочного трансформатора пригодного для любого типа сварки.

Из всевозможных видов промышленного оборудования самым распространенным является сварочный трансформатор. Такой аппарат состоит из нескольких ключевых узлов и способен создавать ток, дуга которого плавит сталь, и соединяет стороны изделия в единый шов. Оборудование делится на несколько видов по сложности исполнения конструкции, а также способности выдавать необходимую величину напряжения. В чем заключается принцип действия сварочного трансформатора и его устройство? Какие физические процессы происходят внутри аппарата? Чем одни изделия могут отличаться от других? Материал статьи и видео сполна осветят эти вопросы.

Чтобы осуществлять плавление металла электрической дугой, необходимо изменить параметры тока, потребляемого от сети. В аппарате он модернизируется так, что напряжение понижается (V), а сила тока возрастает (А). Сварка металла этим оборудованием возможна благодаря несложным комплектующим, входящим в его конструкцию. Большинство моделей включают в себя:

  • магнитопровод;
  • стационарную первичную обмотку из изолированного провода;
  • движущуюся вторичную обмотку, часто без изоляции, для улучшения теплоотдачи;
  • вертикальный винт с лентовидной резьбой;
  • ходовую гайку винта и крепление к обмотке;
  • рукоятку для вращения винта;
  • зажимы для вывода и крепления проводов;
  • корпус с жалюзи для охлаждения.

Некоторые сварочные трансформаторы переменного тока содержат дополнительное оборудование, совершенствующее их работу, о котором будет описано ниже в разделе схем.

Устройство сварочного трансформатора предусматривает магнитопровод. Сердечник не влияет на силу тока, а лишь способствует образованию магнитного поля. Для этого используется пакет пластин из специальной стали. Их поверхность покрывается оксидной изоляцией. Некоторые модели лакируются. Если бы сердечник был из сплошного металла, то вихревые токи (токи Фуко), получаемые из-за действия магнитного потока, снижали бы индукцию поля. За счет наборных составляющих сердечник не образует сплошной проводник, что снижает влияние токов Фуко.

Для более тихой работы пластины сердечника важно стягивать потуже. Слабое соединение ведет к вибрации составляющих благодаря прохождению переменного тока с частотой 50 Гц. Но даже плотное стягивание не устраняет всего шума, поэтому любой расчет сварочного трансформатора подразумевает гул, что слышно на видео по его работе.

Принцип работы сварочного трансформатора

Аппарат, состоящий из вышеописанных элементов, работает по следующему принципу:

  1. Напряжение из сети подается на первичную обмотку, в которой образуется магнитный поток, замыкающийся на сердечнике устройства.
  2. После этого напряжение передается на вторичную катушку.
  3. Магнитопровод, созданный из ферромагнитных материалов, размещая на себе обе обмотки, создает магнитное поле. Индуцирующий магнитный поток образовывает в обмотках переменные электродвижущие силы (ЭДС).
  4. Разница в количестве витков катушек позволяет изменять ток с необходимыми для сварки значениями V и А. По этим показателя происходит расчет сварочного трансформатора.

Существует прямая взаимосвязь между количеством витков вторичной обмотки и получаемым напряжением. При необходимости повысить исходящий ток, вторичную катушку наматывают в большем количестве. Трансформатор для сварки относится к понижающему типу, поэтому число витков вторичной обмотки у него значительно меньше, чем на первичной.

Устройство и принцип действия сварочного трансформатора призвано и регулировать силу исходящего тока, путем изменения расстояния между первичной и вторичной катушками. Именно для этого и предусмотрена движущаяся часть конструкции. На некоторых видео хорошо заметно, что вращение рукоятки и сведение катушек друг к другу приводит к увеличению сварочного тока. Обратное вращение и разведение обмоток способствует понижению силы тока. Это происходит за счет изменения магнитного сопротивления, вследствие чего и возможна быстрая регулировка напряжения, позволяющая подбирать сварочный ток в зависимости от толщины стали и положения шва.

Холостой ход

Сварочный трансформатор имеет два режима работы: под нагрузкой и холостой. Во время выполнения шва, вторичная обмотка замыкается между электродом и изделием. Мощный сварочный ток позволяет плавить металл и образовывать надежное соединение. Но когда сварка окончена, вторичная цепь размыкается. И аппарат переходит в режим холостого хода.

Электродвижущие силы в первичной катушке имеют двойное происхождение. Первые образуются из-за рабочего магнитного потока, а вторые путем рассеяния. Эти ЭДС создаются ответвляясь от основного потока в магнитопроводе, и замыкаясь между витками катушки по воздуху. Именно они и образуют величину холостого тока.

Холостой ход должен быть безопасным для жизни сварщика и ограничиваться 48 V. некоторые модели имею допустимое значение в 60-70 V. Если ЭДС от потока рассеивания превышают эти значения, то устанавливается автоматический ограничитель этого значения. Он должен срабатывать менее чем через секунду после разрыва цепи и прекращения сварки. Для дополнительной защиты сварщика корпус аппарата всегда заземляется, чтобы возникшее напряжение на кожухе, из-за повреждения изоляции первичной обмотки, миновало человеческое тело и уходило в землю.

Схема сварочного трансформатора и ее модификации

Кроме стандартных устройств для изменения тока, сварочный трансформатор может содержать некоторые совершенствующие узлы. Схемы данного оборудования могут быть дополнены:

  • несколькими вторичными обмотками;
  • конденсаторами;
  • импульсными стабилизаторами;
  • тиристорными фазорегуляторами.

Дополнительно, в схему трансформатора добавляется сопротивление, предназначенное для продолжения регулировки силы тока там, где разведение обмоток не дает нужного результата. Это востребовано при работе с тонким металлом или очень мощными моделями оборудования. Сопротивление может быть в виде отдельного корпуса с набором контакторов, задающих определенное значение Ом, через которое будет проходить ток от вторичной обмотки, либо обычной пружиной из высокоуглеродистой стали, прикрепляемой к кабелю массы.

Расчет сварочного трансформатора

Для разных видов сварки необходимы трансформаторы разной мощности. Основной расчет производится на основании разности витков обмотки между первичной и вторичной катушками. Для понижающих устройств действует правило, что если исходящее напряжение необходимо понизить в 10 ил 100 раз, то и количество витков на вторичной катушке должно быть меньше в 10 или 100. Это значение имеет погрешность в 3%. Это же правило действует и в обратную сторону.

Каждое устройство подобного типа имеет свой коэффициент трансформации. Это значение (n) показывает масштабирование силы тока при переходе от первичного (i1) во вторичный (i2). Расчет таков: n = i1/i2. Исходя из этого можно создать устройство подходящее под конкретные виды сварки.

Отличия и разновидности оборудования

Виды сварочных трансформаторов разделяются по рабочему предназначению. Они различаются по:

  • Весу и размеру. От компактных с ремнем для плеча, до больших, перемещаемых на колесиках или тельфером
  • Выдаваемому напряжению холостого хода от 48 V до 70 V.
  • Силе тока от 50 до 400 А. На крупных производственных предприятиях встречаются модели с показателем 1000А.
  • Потребляемого тока и количеству фаз - 220-380V. Одно и трехфазные версии.
  • Импульсной подаче тока или непрерывной.
  • Возможности работы с разными диаметрами электродов, от 2 до 6 мм.

Трансформаторная сварка - простой способ получить крепкое соединение. Она хорошо подойдет для монтажа заборов, сварки труб, создании стеллажей и каркасов беседок. Издаваемый гул от аппарата и треск сварочной дуги вносят некоторый дискомфорт от использования устройства.

Сварочные трансформаторы отличаются ценовой доступностью в магазинах и легкостью схемы сборки в домашних условиях. Их принцип действия несложен, а работа аппарата на видео помогает понять основы обращения с агрегатом. Качество шва сохраняется на высоком уровне, поэтому они широко применяются в быту и промышленной сфере.

Похожие статьи